

UNDERSTANDING <u>COSMIC RAYS</u> AND SEARCHING FOR <u>DARK MATTER</u> WITH PANELA

Roberta Sparvoli for the PAMELA Collaboration University of Rome Tor Vergata and INFN

DARK MATTER SEARCHES

Searches for WIMP Dark Matter

P. Gondolo, IDM 2008

EXPECTED DM SIGNALS

Deviations of the antiparticle spectra wrt secondary production

PAMELA SCIENTIFIC GOALS

- Search for dark matter annihilation
- Search for antihelium (primordial antimatter)
- Study of cosmic-ray propagation (light nuclei and isotopes)
- Study of electron spectrum (local sources?)
- Study solar physics and solar modulation
- Study terrestrial magnetosphere

PAMELA DESIGN PERFORMANCE

Unprecedented statistics and new energy range for cosmic ray physics

- e.g. contemporary antiproton & positron energy, $E_{max}\approx\,50~GeV$

- Simultaneous measurements of many species
 - constrain secondary production models

I HEAT-PBAR flight ~ 25 days PAMELA data I CAPRICE98 flight ~ 5 days PAMELA data

PAMELA DETECTORS

Main requirements \rightarrow high-sensitivity antiparticle identification and precise momentum measure

GF: 21.5 cm² sr Mass: 470 kg Size: 130x70x70 cm³ Power Budget: 360W

ANTIPROTONS

PAMELA: ANTIPROTON-TO-PROTON RATIO PRL 102, 051101 (2009)

PAMELA: ANTIPROTON-TO-PROTON RATIO

PRL 102, 051101 (2009)

ANTIPROTON-TO-PROTON RATIO: NEW DATA

ANTIPROTON FLUX

- PAMELA results are consistent with pure secondary production of antiprotons during the propagation of cosmic rays in the galaxy.
- The quality of PAMELA data surpasses the current precision of the theoretical modeling of the cosmic-ray acceleration and propagation mechanisms.
- Improved models are needed to allow the full significance of these experimental results to be understood.

As shown by the dashed line, a reasonable choice of propagation parameters (dashed-dotted line) allows a good description of PAMELA antiproton data with the inclusion of the wino-annihilation signal. Given current uncertainties on propagation parameters, this primary component cannot be ruled out.

POSITRONS

PAMELA: POSITRON FRACTION WRT OTHER EXP'S NATURE 458, 697, 2009

ESTIMATED PROTON CONTAMINATION WITH "PRE-SAMPLER" METHOD

POSITRON TO ELECTRON FRACTION: NEWDATAData: July 2006 → December 2008

"A statistical procedure for the identification of positrons in the PAMELA experiment", O. Adriani et al., Astroparticle Physics, 34 (2010), 1 - 11.

PRIMARY POSITRON SOURCES

Dark Matter

- e⁺ yield depend on the dominant decay channel
 - → LSPs (SUSY) seem <u>disfavored</u> due to suppression of e⁺e⁻ final states
 - \rightarrow low yield (relative to p-bar)
 - \rightarrow soft spectrum from cascade decays
 - \rightarrow **LKPs** seem <u>favored</u> because can annihilate directly in e⁺e⁻
 - \rightarrow high yield (relative to p-bar)
 - \rightarrow hard spectrum with pronounced cutoff @ $M_{\rm LKP}$ (>300 GeV)
- Boost factor required to have a sizable e⁺ signal
 - \rightarrow NB: constraints from p-bar data!!
- Other hypothesys possible and under study (i.e. Minimal DM Model, decaying DM, new gauge bosons, ...)

EXAMPLE: DARK MATTER

Majorana DM with **new** internal bremsstrahlung correction. NB: requires annihilation cross-section to be 'boosted' by >1000.

Hooper and Zurek arXiv:0902.0593v1

Kaluza-Klein dark matter

PRIMARY POSITRON SOURCES

Astrophysical processes

- Local **pulsars** are well-known sites of e⁺e⁻ pair production (the spinning B of the pulsars strips e- that emit gammas then converting to pairs trapped in the cloud, accelerated and then escaping at the Poles) :
 - → they can individually and/or coherently contribute to the e⁺e⁻ galactic flux and explain the PAMELA e⁺ excess (both spectral feature and intensity)
 - \rightarrow No fine tuning required
 - → if one or few nearby pulsars dominate, anisotropy could be detected in the angular distribution
 - $\rightarrow\,$ possibility to discriminate between pulsar and DM origin of e^+ excess

EXAMPLE: PULSARS

Cholis, Goodenough, Hooper, Simet, and Weiner arXiv:0809.1683

Hooper, Blasi, and Serpico arXiv:0810.1527

Revision of standard CR model

• Pairs created also in the acceleration sites (e.g. in old SNRs);

• Distribution of CR sources not homogeneus (SNRs more in spiral arms)

POSITRONS FROM OLD SNR'S

P. BLASI, PRL 103, 051104 (2009)

EXPLANATION WITH SUPERNOVAE REMNANTS

SHAVIV, NAKAR & PIRAN, ASTRO-PH.HE 0902.0376

HOW TO CLARIFY THE MATTER?

Pulsars (Serpico, Bucciantini)	New SNRs mechanisms (Blasi, Mertsch)	Localized SNR (Piran)	Dark matter (Donato, Ullio, Gaggero, Cuoco)	2
Uncertainties				
 Acceleration model (polar cap, outer gap,) Injection spectrum E^{-α}? Release into the ISM (when, how much?) Source locations, ages, 	 Environmental parameters at SNR (production mechanism) Distance to closest source Cut-off energies 	 Source properties Local environment Diffusion model 	 Particle physics model Particle physics enhancement (Sommerfeld) Substructure enhancement (halo model) 	?
Tests				
 Anisotropy of flux Fluctuations in spectrum (arXiv: 0903.1310) consistency checks (gamma, X-ray,) 	 Antiproton fluxes Secondary nuclei 	 Positron fraction down at several hundred GeV B/C, antiprotons Anisotropy 	 FSR & IC photons Continuing positron fraction rise CMBR distortions LHC signatures 	?

+ need updated background model (with e.g. proper handling of local sources)

Courtesy of J. Edsjo

ELECTRONS

Any positron source is an electron source too ...

RECENT CLAIMS OF (e⁺+e⁻) EXCESS

FERMI does not confirm the ATIC bump but finds an excess wrt conventional diffusive models

PAMELA ELECTRON (e⁻) SPECTRUM

PAMELA ELECTRON (e⁻) SPECTRUM

PAMELA ELECTRON (e⁻) SPECTRUM

PAMELA ALL ELECTRONS→ HIGH ENERGY VERY PRELIMINARY

PROTONS, HELIUMS, NUCLEI, ...

PAMELA PROTON AND HELIUM FLUX

FIT WITH 2 SPECTRAL INDEXES

PROTON/HELIUM RATIO

To be submitted to Science

PAMELA LIGHT NUCLEI FLUXES

Important input to secondary production + propagation models

- Secondary to primary ratios:
 - B / C
 - Be / C
 - Li / C
- Helium and hydrogen isotopes:
 - ³He / ⁴He
 - d / He

Currently collected (data analyzed until Dec. 2008):

120.000 C nuclei 70.000 B nuclei

Truncated mean of multiple dE/dx measurements in different silicon planes

SUMMARY

• **PAMELA** has been in orbit and studying cosmic rays for ~48 months. >10⁹ triggers registered, anc >19 TB of data has been down-linked.

• Antiproton-to-proton flux ratio (~100 MeV - ~100 GeV) shows no significant deviations from secondary production expectations.

• Low energy positron fraction (~1.5 - ~5 GeV) shows solar modulation effects. Excellent statistics!

High energy positron fraction (>10 GeV) increases significantly (and unexpectedly!) with energy. Primary source?
Data at higher energies will help to resolve origin of rise (spillover limit ~300 GeV).

http://pamela.roma2.infn.it

SUMMARY

Interesting features in cosmic ray data seen by PAMELA in last months' analysis:

- Electron flux: spectrum up to ~200 GeV shows spectral features that may point to additional components. Analysis is being completed to increase the statistics and expand the measurement of the e⁻ spectrum up to ~500 GeV and e⁺ spectrum up to ~300 GeV (all electrum (e⁻+ e⁺) spectrum up to ~1 TV).
- **Proton and Helium fluxes**: hardening of the spectrum at high energies:
 - Effects of propagation and reacceleration?
 - Harder spectral sources?
 - Possible hadron sources (seen by other experiments as anisotropies?)

Other measurements under study:

- New antiHe limits
- Strange matter (particles with high A/Z)
- Heliosphere and magnetosphere
- Solar flares