Cosmic Microwave Background the next frontier?

Licia Verde ICREA & ICC Barcelona http://icc.ub.edu/~liciaverde

Institut de Ciències del Cosmos

History of CMB temperature measurements

Importance to cosmology

WMAP (2003)

Detailed statistical properties of these ripples tell us a lot about the Universe

The era of precision cosmology:

LCDM: the "standard" model for cosmology

Few parameters describe the Universe composition and evolution

Homogenous background

Perturbations

 $\Omega_b, \Omega_c, \Omega_\Lambda, H_0, au$

atoms 4%
cold dark matter 23%
dark energy 73%

 $\Lambda? \quad \text{CDM?}$

 A_s, n_s, r

nearly scale-invariant
adiabatic
Gaussian

ORIGIN??

Cosmic History / Cosmic Mystery

McMahon adapted by Peiris

Deja vu

The era of precision cosmology:

Evidence for dark matter

The era of precision cosmology:

Evidence for dark matter

State of the art: temperature

Sachs-Wolfe plateau and the late time Integrated Sachs-Wolfe effect
 Acoustic peaks at "adiabatic" locations
 Damping tail and photon diffusion

Weak gravitational lensing (detected in cross-correlation, Smith et al. 2007)

What next?

a) Beyond primary anisotropies Use the CMB as a backlight to illuminate the growth of cosmological structure.

- Cosmic Microwave Background
- First galaxies
- Universe is reionized
- Ostriker-Vishniac/KSZ
- weak lensing
- •Sunyaev-Zel'dovich (SZ) clusters
- Diffuse thermal SZ
- •Kinetic SZ
- •Rees-sciama/ISW

Watch this space because experiments like e.g., South Pole Telescope or Atacama Cosmology Telescope are releasing data these days

First detected by DASI in 2002

Generation of CMB polarization

• Temperature quadrupole at the surface of last scatter generates polarization.

Polarization for density perturbation

• Radial (tangential) pattern around hot (cold) spots.

And it has been seen!

Komatsu, WMAP7yrs team (2010)

Theory prediction

Observed

CMB Consistent with Simplest Inflationary Models

- Superhorizon, adiabatic fluctuations
 - T and E anticorrelated at superhorizon scales
- Flatness tested to 1%.
- Gaussianity tested to 0.1%.
- nearly scale-invariant fluctuations
 - red tilt indicated at ~2.5 σ

Primordial Adiabatic i.c.

Still testing basic aspects of inflationary mechanism Spectrather than specific implementations

Hu & Sujiyama 1995 Zaldarriaga & Harari 1995 Spergel & Zaldarriaga 1997

Gravity waves stretch space...

Image from J. Rhul.

... and create variations

Image from J. Rhul.

E and B modes polarization

E polarization from scalar and tensor modes

B polarization only from tensor modes

Kamionkowski, Kosowsky, Stebbings 1997, Zaldarriga & Seljak 1997

Relative Amplitudes of CMB power spectra

State of the art: polarization

Acoustic peaks at "adiabatic" locations

E-mode polarization and cross-correlation with T

Large angle polarization from reionization

BICEP limit from BBalone: T/S < 0.73 (95% CL)</p>

Figure: Chiang et al. (2009)

What mechanism generated the primordial perturbations?

Inflation:

Accelerated expansion:

Quantum fluctuations get stretched to become classical and "super-horizon"

Current constraints

WMAP5 Komatsu et al 08 WMAP7 Komatsu et al 10

The future is here

Planck satellite successfully launched in May 2009!

"PR" image

The ultimate experiment for primary CMB temperature

What next?

b)Polarization, the next frontier

Why measure CMB Polarization?

Directly measures dynamics in early universe

So far: Critical test of the underlying theoretical framework for cosmology

Future: "How did the Universe begin?" Improve cosmological constraints Eventually, perhaps, test the theory of inflation.

Plans for the ultimate primary polarization CMB experiment (CM)BPol (e.g., Bauman et al. arXiv:0811.3919)

What about the lower -z Universe? Beyond the vanilla model

Example: neutrinos

(Robust) Neutrino mass constraints (Reid et al 2010, JCAP)

Complementarity

Insights into dark matter

Avgoustidis, Verde, Jimenez, 2009, JCAP 0906:012 Avgoustidis, Burrage, Redondo, Verde, Jimenez, arxiv:1004.2053

Conclusions

CMB: there will be life after Planck

Precision cosmology: "from what to why"

CMB polarization is a window in the early universe and into new physics at high energies [other window into inflaton (self)interactions is primordial non-Gaussianity]

Complementarity: cosmology

Challenging!

END

Axion-like particles Chameleons

SN only

SN + H(z)

