Current Status of sub-GeV Hidden Particle Searches

Sarah Andreas

DESY

July 8, 2010

6th Patras Workshop on Axions, WIMPs and WISPs

in collaboration with: O. Lebedev, S. Ramos-Sánchez, and A. Ringwald

Outline

Motivation for sub-GeV Dark Sector

- Bottom-Up
- Top-Down

2 NMSSM CP-odd Higgs

- Introduction
- Constraints

\bigcirc Hidden U(1) gauge boson

- Introduction
- Constraints

4 Conclusions

Outline

Motivation for sub-GeV Dark Sector

- Bottom-Up
- Top-Down
- 2 NMSSM CP-odd Higgs
- 3 Hidden U(1) gauge boson
- 4 Conclusions

Bottom-Up Motivation

Dark Matter

Several astrophysical and terrestrial observations that might originate from Dark Matter

PAMELA: rise of positron-fraction with energy^[talk Sparvoli]
FERMI: deviation from power-law in e⁺ + e⁻ spectrum^[talk Strigari]

DAMA: annual modulation in nuclear recoil event rate^[talk Cerulli]
 CoGeNT: excess of events in low energy nuclear recoils

Bottom-Up Motivation

Dark Matter

Several astrophysical and terrestrial observations that might originate from Dark Matter

PAMELA: rise of positron-fraction with energy^[talk Sparvoli]
FERMI: deviation from power-law in e⁺ + e⁻ spectrum^[talk Strigari]

but: PAMELA: no excess in anti-protons

- DAMA: annual modulation in nuclear recoil event rate^[talk Cerulli]
- CoGeNT: excess of events in low energy nuclear recoils

but: CDMS & XENON: no signal observed^[talk Balakishiyeva, Oberlack]

DM Observations

Difficulties for standard WIMPs

PAMELA & FERMI

DAMA & GoGeNT vs. CDMS & XENON

DM Observations

Difficulties for standard WIMPs

PAMELA & FERMI

- larger annihilation cross section required than needed for correct relic abundance:
- dominant annihilation into leptons (leptophil):
- high mass scale:

DAMA & GoGeNT vs. CDMS & XENON

 $m\sim \mathcal{O}({\sf TeV})$

DM Observations

Difficulties for standard WIMPs

PAMELA & FERMI

- larger annihilation cross section required than needed for correct relic abundance:
- dominant annihilation into leptons (leptophil):
- high mass scale:

$\sigma v_{ann} \gg \sigma v_{ann}^{\Omega h}$
$\sigma v_{ann} \gg \sigma v_{ann}^{\Omega h}$

- $\chi \chi
 ightarrow l^+ l^- \ m \sim \mathcal{O}(\text{TeV})$

DAMA & GoGeNT vs. CDMS & XENON	
• light DM candidate:	$m\sim 5-10~{ m GeV}$
• inelastic heavy DM with excited states:	$\Delta m \sim 100$ keV

DM Observations

Difficulties for standard WIMPs

PAMELA & FERMI

- larger annihilation cross section required than needed for correct relic abundance:
- dominant annihilation into leptons (leptophil):
- high mass scale:

σv_{ann}	\gg	$\sigma v_{ann}^{\Omega h^2}$

 $\chi\chi \to I^+I^-$

 $m\sim \mathcal{O}({\sf TeV})$

DAMA & GoGeNT vs. CDMS & XENON	
• light DM candidate:	$m\sim 5-10~{ m GeV}$
• inelastic heavy DM with excited states:	$\Delta m \sim 100$ keV

\Rightarrow non-standard WIMP?

Sarah Andreas (DESY)

Alternative Scenarios

Hidden Sector with light messenger particle

Alternative Scenarios

Hidden Sector with light messenger particle

• Sommerfeld effect \Rightarrow enhanced annihilation cross section

Alternative Scenarios

Hidden Sector with light messenger particle

- Sommerfeld effect \Rightarrow enhanced annihilation cross section
- kinematics \Rightarrow decay into light leptons

Alternative Scenarios

Hidden Sector with light messenger particle

- Sommerfeld effect \Rightarrow enhanced annihilation cross section
- kinematics \Rightarrow decay into light leptons
- inelastic scattering on nuclei

Alternative Scenarios

Hidden Sector with light messenger particle

- Sommerfeld effect \Rightarrow enhanced annihilation cross section
- kinematics \Rightarrow decay into light leptons
- inelastic scattering on nuclei

Example

- Axion-like Particle
 - ► NMSSM CP-odd Higgs^[Hooper & Tait 2009]

Alternative Scenarios

Hidden Sector with light messenger particle

- Sommerfeld effect \Rightarrow enhanced annihilation cross section
- kinematics \Rightarrow decay into light leptons
- inelastic scattering on nuclei

Example

- Axion-like Particle
 - NMSSM CP-odd Higgs^[Hooper & Tait 2009]
- hidden U(1) Photon
 - ► Hidden Sector^[Arkani-Hamed et al. 2009]
 - ► Asymmetric Mirror World^[An et al. 2010]

Top-Down Motivation

String compactifications

Hidden Sectors (HS)

appear naturally in various supersymmetric models descending from string theory

Top-Down Motivation

String compactifications

Hidden Sectors (HS)

appear naturally in various supersymmetric models descending from string theory

- mediators are weakly coupled to visible sector
- mediators can be light

String compactifications

- heterotic string can reproduce the NMSSM^[Lebedev&Ramos-Sanchez]
 - in a Peccei-Quinn limit
 - ▶ with a light Pseudo-Goldstone boson, an axion-like particle (ALP)

String compactifications

- heterotic string can reproduce the NMSSM^[Lebedev&Ramos-Sanchez]
 - in a Peccei-Quinn limit
 - ▶ with a light Pseudo-Goldstone boson, an axion-like particle (ALP)
- breaking of larger groups down to the SM gauge group can yield hidden U(1) symmetries
 - may remain unbroken down to small energy scales
 - hidden Photon may be light
 - weak coupling to visible sector via kinetic mixing

Outline

Motivation for sub-GeV Dark Sector

2 NMSSM CP-odd Higgs

- Introduction
- Constraints

3 Hidden U(1) gauge boson

4 Conclusions

• μ -problem: Why is $\mu \ll M_{GUT}$?

• μ -problem: Why is $\mu \ll M_{GUT}$?

solution: replace mass term μ by coupling to scalar field S

$$W \subset \lambda SH_u H_d \qquad \Rightarrow \mu = \lambda \langle S \rangle$$

• μ -problem: Why is $\mu \ll M_{GUT}$?

solution: replace mass term μ by coupling to scalar field S

$$W = \lambda S H_u H_d + \frac{1}{3} \kappa S^3 \qquad \Rightarrow \ \mu = \lambda \langle S \rangle$$

 Z_3 -symmetric NMSSM

• μ -problem: Why is $\mu \ll M_{GUT}$?

solution: replace mass term μ by coupling to scalar field S

$$W = \lambda S H_u H_d + \frac{1}{3} \kappa S^3 \qquad \Rightarrow \ \mu = \lambda \langle S \rangle$$

- Z₃-symmetric NMSSM
- \Rightarrow new particles: additional CP-odd Higgs A^0 (ALP)

• μ -problem: Why is $\mu \ll M_{GUT}$?

solution: replace mass term μ by coupling to scalar field S

$$W = \lambda SH_uH_d + \frac{1}{3}\kappa S^3 \qquad \Rightarrow \ \mu = \lambda \langle S \rangle$$

Z₃-symmetric NMSSM

- \Rightarrow new particles: additional CP-odd Higgs A^0 (ALP)
- little hierarchy problem/fine-tuning: tree-level prediction $m_h \le m_Z$ vs. LEP bound $m_h \ge 114$ GeV

• μ -problem: Why is $\mu \ll M_{GUT}$?

solution: replace mass term μ by coupling to scalar field S

$$W = \lambda S H_u H_d + \frac{1}{3} \kappa S^3 \qquad \Rightarrow \ \mu = \lambda \langle S \rangle$$

Z₃-symmetric NMSSM

- \Rightarrow new particles: additional CP-odd Higgs A^0 (ALP)
- little hierarchy problem/fine-tuning: tree-level prediction m_h ≤ m_Z vs. LEP bound m_h ≥ 114 GeV solution: additional decay h → 2A⁰ for light A⁰ reduces LEP limit

- Higgs potential with approximate Peccei-Quinn symmetry in limit $\kappa \rightarrow 0$
- naturally light pseudoscalar A^0 with $m_{A0}^2 \simeq -3\kappa A_\kappa s$ where $\kappa \ll 1$ and $A_{\kappa}, s \sim \text{EW}$ scale

- Higgs potential with approximate Peccei-Quinn symmetry in limit $\kappa \rightarrow 0$
- naturally light pseudoscalar A^0 with $m_{A0}^2 \simeq -3\kappa A_\kappa s$ where $\kappa \ll 1$ and $A_{\kappa}, s \sim \text{EW}$ scale
- from string theory $\kappa \gtrsim 10^{-6}$ $\Rightarrow m_{A0} \sim 100 \text{ MeV}$

- Higgs potential with approximate Peccei-Quinn symmetry in limit $\kappa \rightarrow 0$
- naturally light pseudoscalar A^0 with $m_{A0}^2 \simeq -3\kappa A_\kappa s$ where $\kappa \ll 1$ and $A_{\kappa}, s \sim \text{EW}$ scale
- from string theory $\kappa \gtrsim 10^{-6}$ $\Rightarrow m_{A^0} \sim 100 \; {
 m MeV}$
- coupling of A^0 to fermions

$$\Delta \mathcal{L} = -i \frac{g}{2m_W} C_{Aff} \left(m_d \ \bar{d}\gamma_5 d + \frac{1}{\tan^2 \beta} m_u \ \bar{u}\gamma_5 u + m_l \ \bar{l}\gamma_5 l \right) A^0$$

- Higgs potential with approximate Peccei-Quinn symmetry in limit $\kappa \rightarrow 0$
- naturally light pseudoscalar A^0 with $m_{A0}^2 \simeq -3\kappa A_\kappa s$ where $\kappa \ll 1$ and $A_{\kappa}, s \sim \text{EW}$ scale
- from string theory $\kappa \gtrsim 10^{-6}$ $\Rightarrow m_{A^0} \sim 100 \; {
 m MeV}$
- coupling of A^0 to fermions

$$\Delta \mathcal{L} = -i \frac{g}{2m_W} C_{Aff} \left(m_d \ \bar{d}\gamma_5 d + \frac{1}{\tan^2 \beta} m_u \ \bar{u}\gamma_5 u + m_l \ \bar{l}\gamma_5 l \right) A^0$$

 avoid violation of perturbativity and/or finetuning $\Rightarrow 10^{-2} \leq C_{Aff} \leq 10^2$

- $2m_\mu < m_{A^0} < 3m_\pi$: $C_{Aff} < \mathcal{O}(10^{-2})$ from K- and B-decays
- $m_{A^0}\sim 3m_\pi-m_\Upsilon$: $C_{Aff}<\mathcal{O}(10^{-1}-1)$ from Υ -decays
- $m_{A^0}\gtrsim 12$ GeV: $C_{Aff}<{\cal O}(10)$ from $e^+e^ightarrow bar{b}A^0
 ightarrow bar{b}bar{b}$

- $2m_{\mu} < m_{\Delta^0} < 3m_{\pi}$: $C_{Aff} < \mathcal{O}(10^{-2})$ from K- and B-decays
- $m_{A^0} \sim 3m_\pi m_\Upsilon$: $C_{Aff} < \mathcal{O}(10^{-1} 1)$ from Υ -decays
- $C_{Aff} < \mathcal{O}(10)$ from $e^+e^- \rightarrow b\bar{b}A^0 \rightarrow b\bar{b}b\bar{b}$ • $m_{A^0} \gtrsim 12 \text{ GeV}$:
- $m_{A^0} < 2m_{\mu}$: not well studied

$$\Gamma_{
m tot} = \Gamma(A^0 o \gamma \gamma) + \Gamma(A^0 o e^+ e^-)$$

- Meson-decays (visible & invisible)
- Pion-decay
- Muon g 2
- Beam dump experiments
- Reactor experiments

invisible

$$X \to Y + A^0 \to Y +$$
inv.

visible

$$X \rightarrow Y + A^0 \rightarrow Y + e^+ e^-$$

$$X \rightarrow Y + A^0 \rightarrow Y + inv$$

 A^0 sufficiently long lived to escape detector $\Gamma^{X \to Y + A^0} / \Gamma^{\text{tot}} < \mathcal{B}^{\exp}$

visible

$$X \rightarrow Y + A^0 \rightarrow Y + e^+e^-$$

invisible

$$X \rightarrow Y + A^0 \rightarrow Y + inv.$$

 A^0 sufficiently long lived to escape detector $\Gamma^{X \to Y + A^0} / \Gamma^{\text{tot}} < \mathcal{B}^{\exp}$

visible

$$X \rightarrow Y + A^0 \rightarrow Y + e^+e^-$$

 A^0 decays within detector $BR^{X \to Y+A^0} * BR^{A^0 \to e^+e^-} < \mathcal{B}^{exp}$

invisible

$$X \rightarrow Y + A^0 \rightarrow Y + inv$$

 A^0 sufficiently long lived to escape detector $\Gamma^{X \to Y + A^0} / \Gamma^{\text{tot}} < \mathcal{B}^{\exp}$

visible

$$X \rightarrow Y + A^0 \rightarrow Y + e^+e^-$$

 A^0 decays within detector $BR^{X \to Y+A^0} * BR^{A^0 \to e^+e^-} < \mathcal{B}^{exp}$

 ${\cal K}^+ o \pi^+ + X$ peak in π^+ momentum spectrum

PATRAS - July 8, 2010 14 / 20

 $\pi^{0} \rightarrow e^{+}e^{-}$ in SM through loop diagrams tree level channel through A^{0} $\Gamma^{\pi^{0} \stackrel{A^{0}}{\rightarrow} e^{+}e^{-}}/\Gamma^{\text{tot}} < \mathcal{B}^{\text{exp}}$

 a_{μ}

 $\begin{array}{l} \mbox{currently} \ a_{\mu}^{\rm exp} > a_{\mu}^{\rm SM} \\ \mbox{several NMSSM contributions} \\ \mbox{negative} \ A^0 \ \mbox{loop contribution} \end{array}$

 $\pi^0
ightarrow e^+ e^-$

in SM through loop diagrams tree level channel through A^0 $\Gamma^{\pi^0 \xrightarrow{A^0} e^+ e^-} / \Gamma^{\text{tot}} < \mathcal{B}^{\text{exp}}$

 a_{μ}

currently $a_{\mu}^{\exp} > a_{\mu}^{SM}$ several NMSSM contributions negative A^0 loop contribution not worsen discrepancy beyond 5σ

Beam-dump & Reactor Experiments

PATRAS - July 8, 2010 15 / 20

B→Ke⁺e⁻

Orsav

CHARM

 10^{-1}

Outline

- 1 Motivation for sub-GeV Dark Sector
- 2 NMSSM CP-odd Higgs
- 3 Hidden U(1) gauge boson
 - Introduction
 - Constraints

Hidden Photon and Kinetic Mixing [talk Redondo]

- additional $U(1)_h$ -symmetry in HS \Rightarrow hidden photon γ'
- SM not charged under HS and vice versa

dominant interaction: kinetic mixing of γ' and γ

most general Lagrangian

$$\mathcal{L} = -rac{1}{4}F_{\mu
u}F^{\mu
u} - rac{1}{4}B_{\mu
u}B^{\mu
u} + rac{\chi}{2}B_{\mu
u}F^{\mu
u} + rac{m_{\gamma'}^2}{2}B_{\mu}B^{\mu}$$

• $\chi \sim rac{lpha}{4\pi} \sim \mathcal{O}(10^{-4} - 10^{-3})$

generated by loops of heavy particles charged under both U(1) groups

• γ^\prime couples and can decay to SM fermions through kinetic mixing

Constraints

Muon & Electron g - 2

past beam-dump experiments

Muon & Electron g - 2one-loop contribution from hidden photon^[Pospelov 2009]

past beam-dump experiments γ' emitted via bremsstrahlung from e-beam^[Bjorken et al. 2009] search for decay $\gamma' \rightarrow e^+e^-$

Muon & Electron g - 2one-loop contribution from hidden photon^[Pospelov 2009]

past beam-dump experiments γ' emitted via bremsstrahlung from e-beam^[Bjorken et al. 2009] search for decay $\gamma' \rightarrow e^+e^-$

é

Constraints

Muon & Electron g - 2one-loop contribution from hidden photon^[Pospelov 2009]

past beam-dump experiments γ' emitted via bremsstrahlung from e-beam^[Bjorken et al. 2009] search for decay $\gamma' \rightarrow e^+e^-$

sensitivity of future experiments

- JLab experiments e.g. APEX
- thick target at DESY: HIPS

Sarah Andreas (DESY)

PATRAS - July 8, 2010

18 / 20

Outline

- 1 Motivation for sub-GeV Dark Sector
- 2 NMSSM CP-odd Higgs
- 3 Hidden U(1) gauge boson
- 4 Conclusions

Summary

- HS well motivated: DM, SM extensions, string theory
- possibly light particles in HS with very weak couplings to SM
- constraints from various experiments
- NMSSM: A⁰ heavier than 210 MeV or with 10 000 times weaker couplings to fermion than SM Higgs
- Hidden U(1): γ' can be searched for at future beam dump experiments

complementary searches at

- ► JLab \Rightarrow see next talk by A. Afanasev
- ► DESY HIPS ⇒ talk tomorrow by J. Mnich

- Asymmetric Mirror DM with hidden photon^[An et al. 2010]
- \bullet Hidden Sector with hidden photon $^{\rm [Bjorken\ et\ al.\ 2009]}$

Sarah Andreas (DESY)

• NMSSM and PAMELA^[Hooper & Tait 2009]

- $\chi^0 \chi^0 \to A^0 h$ followed by $h \to A^0 A^0$ and $A^0 \to e^+ e^-$ (top) or $\mu^+ \mu^-$ (bottom)
- normalized to PAMELA, boost from Sommerfeld enhancement

