XMASS

Masaki Yamashita Kamioka observatory, ICRR, Univ. Of Tokyo On behalf of XMASS collaboration

6th Patras Workshop on Axions, WIMPs, WISPs 5-9/July/2010 Zurich University

Outline

- Kamioka Observatory
- XMASS 800 kg liquid xenon detector
 - Experimental Hall
 - Water Tank
 - Cryogenics, gas/liquid line and Emergency
 - Background
 - Detector and its Assembly
- Summary

Kamioka Observatory

XMASS Collaboration

Kamioka Observatory, ICRR, Univ. of Tokyo: Y. Suzuki, M. Nakahata, S. Moriyama, M. Yamashita, Y. Koshio, A. Takeda, K. Abe, H. Sekiya, H. Ogawa, K. Kobayashi, K. Hiraide, K. Ueshima, A. Shinozaki, H. Nishiie, S. Hirano **IPMU, University of Tokyo**: Kai Martens, J. Liu Saga University : H. Ohsumi **Tokai University**: K. Nishijima, D. Motoki **Gifu University** : S. Tasaka Waseda University : S. Suzuki Yokohama National University: S. Nakamura, I. Murayama, K. Fujii Miyagi University of Education : Y. Fukuda **STEL, Nagoya University**: Y. Itow, K. Masuda, H. Uchida, Y. Nishitani Kobe University: Y. Takeuchi, K. Ohtsuka Seoul National University : Soo-Bong Kim Sejong University : Y. D. Kim KRISS: Y. H. Kim, M. K. Lee, K. B. Lee, J. S. Lee

XMASS Project

Sensitivity for SI case

10⁻⁴ dru, 100 kg fiducial

XMASS 800 kg 10 days

XMASS 800 kg 1 year (flat bg assumed)

Why Liquid Xenon ?

- High Atomic mass Xe (A~131) good for SI case (cross section \propto A²)
- Odd Isotope (Nat. abun: 48%, 129,131) with large SD enhancement factors
- High atomic number (Z=54) and density (ρ =3g/cc):
 - compact, flexible and large mass detector.
- High photon yield (~ 46000 UV photons/MeV at zero field)
 - Easy to purify for both electro-negative and radioactive purity
 - by recirculating Xe with getter for electro-negative
 - Distillation for Kr removal

8

Concept of background reduction Self-shielding

Low Background region near the center of the fiducial volumeaki Yamashita

γ tracking MC from external to Xenon

Concept of background reduction Self-shielding

Background

Background in the 100 kg fiducial volume out of 1 ton. •External

•gamma

neutron

Detector material

•PMT+Base (2 inch)

•U/Th/⁴⁰K/⁶⁰Co

(0.7/1.5/<5.1/2.9 mBq/PMT)

Internal

•⁸⁵Kr

<1ppt Kr required
3 ppt is achieved
U/Th(Rn)
<10⁻¹⁴ g/g required
U/Th 9±6/<23 x 10⁻¹⁴ g/g

Water Shield

<10⁻⁴ dru

Distillation Tower

MS, Charcoal goal <10⁻¹⁴ g/g Masaki Yamashita

XMASS PMT HISTORY

PMT

YEAR	2000	2002	2009
Model	Prototype	R8778	R10789
Material:Body	glass	Kovar	Kovar
QE	25%	25%	27-39%
RI:			
U [mBq/PMT]	50	18±2	0.7 +/- 0.28
Th [mBq/PMT]	13	6.9±1.3	1.5 +/- 0.31
⁴⁰ K [mBq/PMT]	610	140±20	<5.1
⁶⁰ Co [mBq/PMT]	<1.8	5.5±0.9	2.9 +/- 0.16
			with hase

e.g. ⁴⁰K case

4000 Bq/Human

Water Tank

70 PMTs (20 inch) to detect Cerenkov Light (same as SK) Active shield for muon induced events

Passive shield for γ and neutron from Rock

water purification system

Rn: ~ 1mBq/m³ 5ton/hour

Water Tank

entrance (clean room)

Experimental Hall

Distillation Tower

200

Xenon Buffer Tank

Distillation to reduce krypton in Xe (2003)

A distillation system was made and tested. System specification:

Process speed: 0.6kg Xe/hour Collection efficiency: > 99% Kr concentration after process: < 1/1000

178±2K in tower

	Boiling point (@1 atm)
Хе	165K
Kr	120K

Astroparticle Physics 31(2009), 290

Distillation Tower (Upgrade)

- 5kg/hour production
 - ~ 8 days for 1 ton
- >10⁵ Kr reduction (goal < 1 ppt)

	2003	2009
Height	3 m	4m
production [kg/hr]	0.6	5
Kr Reduction	I/I0 ³	1/10 ⁵

Φ1113

800 kg Detector

- The detector will be attached to SUS frame.
- diameter of the PMT holder is **01113.**
- 2009/11 2010/02: PMT assembly and cabling.

Clean Room in Water Tank

Stage for the assembly of detector

Rn level in the air $\sim 10 mBq/m3$

Design of 800 kg Detector

pentakisdodecahedron

Hexagonal PMT Hamamatsu R10789 QE 28-39%

60 triangle in total
about 10PMT/triangle×60
Total: 642 PMTs
Photo coverage: 62%

642 PMTs

宇宙線研究所 神岡宇宙素

1于研究施設

c) 東京大学宇宙線研究所 神岡宇宙素粒子研究施設

PMT Holder

OFHC Filler

Summary

- XMASS 800 kg detector is under constructing at Kamioka. The goal is to reach a few x 10⁻⁴⁵cm² for spin independent case.
- PMT assembly was completed and the detector vessel will be delivered in the end of July and the installation will be finished in August.
- The WIMP search run will be started in this year 2010 after the commissioning run.