Search for Dark Matter with Fermi

Louis Strigari KIPAC/Stanford for the Fermi Collaboration

> AXION-WIMP 2010 Zurich University July 5 2010

Fermi observatory

LAT

Large Area Telescope (LAT): 20 MeV - 300 GeV

GLAST Burst Monitor (GBM):

8 keV - 40 MeV

Launched June 11, 2008

GMB

Full sky survey

Angular resolution about 0.1 deg. above 10 GeV

FoV about 2.4 sr.

Excellent charged particle background rejection

Fermi observatory

1451 sources
57% positionally associated
241 show variability

Photons from WIMP Annihilation

Flux = Particle Physics x Astrophysics

$$\frac{dN_{\gamma}}{dAdt} = \frac{1}{4\pi} \mathcal{P}[\langle \sigma v \rangle, M_{\chi}, dN_{\gamma}/dE] \mathcal{L}(\rho_s, r_s, \mathcal{D}).$$

$$\mathcal{L} = \int_0^{\Delta\Omega} \left\{ \int_{\text{LOS}} \rho^2 [r(\theta, \mathcal{D}, s)] ds \right\} d\Omega,$$

Relic abundance set by annihilation cross section

Gamma-ray yield from WIMPs

Search Strategies

Satellites: Low bkgd, good source id, low statistics

Galactic center: Good statistics, source confusion/ diffuse backgrounds

Halo: Good statistics but diffuse backgrounds

Spectral lines: Good source id, low statistics Extragalactic: Good statistics, diffuse bkgds and astrophysics

Galaxy clusters: Low backgrounds but low statistics

Diffuse Galactic Emission

EARCH FOR DM IN THE GC SERRET FOR BM IN THE GC

Expected steep central profile and c proximity

Source confusion: near or along the l sight to the GC

 Diffuse emission modeling: challenge model

Lines from Galaxy: Theory

Dark Matter annihilates to gamma-X

$$E_{\gamma} = m_{\chi} \left(1 - \frac{m_X^2}{4m_{\chi}^2} \right)$$

Neutralino branching ratios in the range $10^{-3} - 10^{-5}$

- Dark Matter Models with enhanced lines emission may be visible to Fermi (e.g. Gustafsson et al. PRL 2007)
- Photons from radiative corrections may also give significant high energy photons
- Decay of gravitinos also may give visible
 lines (Ibarra and Tran, 2007)

Fermi Constraints on Lines from Galaxy

$$L\left(\bar{E}|f,\Gamma\right) = \prod_{i=0}^{n_{tot}} f \cdot S\left(E_{i}\right) + (1-f) \cdot B\left(E_{i},\Gamma\right)$$

Phys.Rev.Lett.104:091302,2010

Limits obtained in the energy range 30-200 GeV

- Search region b > 10 degrees and a region right around the GC
- 11 months of data

 Obtained cross section upper limits of order 10⁻²⁷ cm³ s⁻¹

Milky Way dwarf spheroidals

<u>Satellite</u>	<u>Year Discovered</u>
LMC	1519
SMC	1519
Sculptor	1937
Fornax	1938
Leo II	1950
Leo I	1950
Ursa Minor	1954
Draco	1954
Carina	1977
Sextans	1990
Sagittarius	1994
Ursa Major I	2005
Willman 1	2005
Ursa Major II	2006
Bootes I	2006
Canes Venatici I	2006
Canes Venatici II	2006
Coma Berenices	2006
Segue 1	2006
Leo IV	2006
Hercules	2006
Bootes II	2007
Leo V	2008
Segue 2	2009

dwarf spheroidals (dSph)

- Nearest galaxies to the Milky Way
- Most dark matter dominated objects known
- Dark matter distributions constrained from stellar kinematical data
- Not rotation and mildly elliptical-- dark matter distributions not as complicated

Dark Matter distribution of dSphs

Limits from dSphs

Consider a 10 degree ROI around each dSph

Search for dark subhalos

- Idea: Search for objects that only shine because of dark matter annihilation
- Some satellites could be within a few kpc of the Sun, and their extension may be resolved by the LAT
- Search criteria:
 - More than 20 degrees from Galactic plane
 - No counterpart at other wavelengths
 - Emission constant in time
 - Spatially extended: 1 degree radial extension

Detectable subhalos 0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 (a) DM Host Halo (b) DM Host Halo + DM Diffuse $... \bar{N}_3$ 10 $-\bar{N}_5$ 8 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 \mathbf{N}_{ρ} Anderson et al., arXiv:1006.1628 2 $150 M_{\chi} [GeV]$ 200 300 50 100 250

Cosmological WIMPs

 Cross section limits derived from measurement of power law extragalactic spectrum

▶ Energy range of 20-100 GeV

 Some uncertainties due to the distribution of dark matter

 Possible to exclude DM interpretation of the Fermi, Pamela electron spectrum

Conclusions and Outlook

- With 1+ years of data no discovery to report
- However interesting limits on dark matter, particularly those models with high annihilation cross sections that explain other data sets
- Astrophysical backgrounds uncertain-- Fermi will attempt to understand them in the coming years and determine what their impact is on dark matter studies
- Improvements are expected:
 - Charged particle contamination
 - Photons below 200 MeV

Fermi is a 5-10 year mission... More results on the way!