

Indirect Detection: Principles and Techniques

Chris Savage

Oskar Klein Centre for Cosmoparticle Physics Stockholm University

Signals from relic dark matter interactions outside the laboratory

- Annihilation in galactic halos
 - Cosmic rays: positrons, anti-protons, γ-rays
- Capture/annihilation in massive bodies
 - Neutrinos
 - Stellar evolution
 - Stellar abundances
- Results: see later talks

WIMP annihilation

- Annihilation rate ~ ρ^2 : Look for signal from high density regions
 - Galactic center
 - Clumps
 - Populations collected at centers of massive bodies
- Annihilation products: Positrons, γ-rays, neutrinos typically suppressed at tree level
 - Secondaries
 - 1-loop contributions (γ-rays)

Craar Klein

centre

Stockholm University

WIMP annihilation

Cosmic rays

Silk & Srednicki (1984); Ellis et al. (1988) Gondolo & Silk (1999)

Charged cosmic rays

- Positrons
- Anti-protons
- Anti-deuterons
- Energy spectrum only No spatial resolution (magnetic fields)

• Gamma-rays

Both energy spectrum and spatial distribution available

Astrophysical modeling

- Dark matter halo density profile (rate ~ ρ^2)
 - Cuspy vs. cored center

NFW:
$$\rho(r) = \rho_0 \frac{r_0}{r} \left(\frac{1 + (r_0 / r_s)}{1 + (r / r_s)} \right)^2$$

isothermal :
$$\rho(r) = \rho_0 \frac{1 + (r_0 / r_s)^2}{1 + (r / r_s)^2}$$

- Clumping → "boost factor"
- Cosmic ray propagation
 - Magnetic fields, interactions
 - Diffusion, convection, energy loss, reaccelereation

$$\frac{\partial \psi}{\partial t} = q(\vec{r}, p) + \vec{\nabla} \cdot (D_{xx} \vec{\nabla} \psi - \vec{V} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left[p \psi - \frac{p}{3} (\vec{\nabla} \cdot \vec{V}) \psi \right] - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Strong & Moskalenko (1998)

• Cosmic ray backgrounds: supernova, pulsars, etc.

7/05/2010

Positrons

- Spectrum
 - Annihilate directly to e[±]
 - Mono-energetic ($E = m_{\chi}$)
 - Broadened by propagation effects
 - Channel suppressed in many models
 - Annihilate to W[±], W decays leptonically
 - Broad peak (centered ~ m_χ/2)
 - Other channels
 - Continuum
- Background
 - Mainly secondaries from collisions with interstellar matter
 - Difficult to model, but continuum expected

Cohar Klein

Stockholm University

Positrons

• HEAT excess (...also PAMELA)

7/05/2010

Anti-protons

• Spectrum

Hadronization: continuum only

- Background
 - Mainly secondaries from collisions with interstellar matter
 - Continuum, but decreases at low energies

HEAT, BESS, CAPRICE, ATIC,...

Synchrotron radiation

Finkbeiner (2004) Hooper, Finkbeiner & Dobler (2007)

- Excess synchrotron radiation found when subtracting foregrounds from WMAP maps
- WIMP annihilations can provide the necessary electrons/positrons to explain the excess

Finkbeiner (2004)

Crear Klein centre Stockholm University

- Spectrum
 - Annihilate directly to γ's
 - Mono-energetic ($E = m_{\chi}$)
 - Loop suppressed in most models
 - Annihilate to Z + γ
 - Mono-energetic peak (E < m_{χ}) + continuum (Z decay)
 - Loop suppressed in most models
 - Internal bremsstrahlung
 - Hard spectrum
 - Other channels
 - Continuum (mainly from $\pi^0 \rightarrow \gamma \gamma$)
- Background
 - Continuum only
 - Peak is "smoking gun"

7/05/2010

Background depends on observational target

- Galactic center
 - High signal
 - High background
- Dwarf galaxies, subhalos
 - Low signal
 - Low background
- Wide regions (diffuse)

• EGRET Excess (galactic center)

Prospects

- Dwarf galaxies
 - Dark matter dominated
 - Segue 1: nearby, high latitude

- Diffuse
 - unresolved subhalos, extragalactic
 - Anisotropies (à la WMAP)

Gamma-ray experiments

• EGRET, CANGAROO, Whipple

Low energy gamma-rays

- INTEGRAL sees 511 keV line from galactic bulge
- Spherically shaped emission region
 - Consistent with expected DM distribution
- Light dark matter needed

Cosmic rays: issues

- Some signals depend significantly on halo density profile (galactic center)
- Cosmic ray background models have significant uncertainties
 - Peaks in spectrum are clear WIMP signature
 - Non-matching continuum spectrum: not so clear
- Some explanations for current excesses require boost factor

WIMP capture/annihilation in massive bodies

Signatures:

- Neutrinos (Sun, Earth)
- Heat: stellar evolution (WIMP burners/dark stars/pop III stars)

7/05/2010

Neutrinos from the Sun

Silk, Olive & Srednicki (1985); Freese (1986)

Gravitational capture via WIMP-nucleus elastic scattering

- Solar abundances
 - Hydrogen ~ 74%
 - Helium ~ 25%
 - Metals ~ 1-2%
- Spin-dependent vs. spin-independent
- Metals significant
 - SI cross-section scales as A²
 - Hydrogen/Helium inefficient at capturing
- Halo model
 - Local density
 - Velocity distribution

Neutrinos from the Sun

- Equilibrium between capture and annihilation?
 - Thermal relic (< σ_{ann} v> ~ 10⁻²⁶ cm³/s) -- probably
 - WIMP/anti-WIMP asymmetry Talk by M Frandsen
- Annihilation channels
 - Directly to neutrinos
 - Mono-energetic, strong signature
 - W, Z, higgs, heavy quarks
 - Neutrinos from secondary decays
 - Continuous energy spectrum, ~ $\frac{1}{3} \frac{1}{2}$ WIMP mass
 - Light quarks
 - Negligible neutrino energies
- Propagation: interactions, oscillations
 - Sun optically thick if $E_v > 200 \text{ GeV}$

Majorana (neutralino)

7/05/2010

6th Patras Workshop - Zurich

Neutrinos from the Sun

- Point source
- Energy spectrum
 - WIMP mass, annihilation channel

Neutrino spectra

Neutrino induced muon spectra

F.Montanet, CNRS/IN2P3 and UJF for Antares

- Closer to annihilations (flux ~ $1/r^2$)
- Smaller body \Rightarrow smaller capture rate
 - Capture and annihilation: not in equilibrium
- Embedded within Sun's gravitational well

7/05/2010

Neutrinos from the Earth

- Resonant capture:
 - $m_{\chi} \sim m_{nuc}$
- Gravitational diffusion:
 3-body interactions with Jupiter
 - Gould (1991)
- Orbital dynamics after first scatter in Sun
 - Damour & Krauss (1999)
 - Lundberg & Edsjo (2004)
 - Peter (2009)
 - Dynamics also important for capture in Sun with heavy WIMPs (above TeV)

Cohar Klei

Stockholm University

WIMP burners/dark stars

- Majority of annihilation energy deposited in stellar medium
 - Sun/Earth: negligible heat contribution
- Stars in higher dark matter density regions: non-negligible heat contribution?
 - Galactic center
 - Early universe

WIMP burners

Salati & Silk (1989); Moskalenko & Wai (2007); Scott, Edsjo & Fairbarn (2007)

Higher DM density at galactic center

- Spike around central black hole?
- White dwarfs
 - Large boost in luminosity
 - Eccentric orbits: varying luminosity?
- Low mass main sequence stars
 - Longer lifetimes
 - Modified HR diagram track

Anomalous chemical abundances

Monreal, Nelson & Formaggio (2007)

- High energy annihilation products ⇒ spallation reactions
- Low mass stars at galactic center: excess lithium, beryllium, boron
- Detection prospects
 - Spectral measurements difficult at galactic center.
 - Ejected stars?

Parameters that yield Boron abundance > 10⁻⁸ for a variety of low mass stars/brown dwarfs.

Dark stars/Pop III stars

Spolyar, Freese & Gondolo (2008)

- First stars produced from 10⁵ 10⁶ solar mass protostellar halos
- Adiabatic contraction of DM with baryons leads to high DM densities \Rightarrow WIMP annihilation
- Heat from annihilation stops collapse of baryons: stable body powered by WIMP annihilation instead of fusion

Dark stars/Pop III stars

locco (2008); Freese, Spolyar & Aguirre (2008)

- Second phase: capture
 - As WIMPs depleted, further contraction of baryons
 - Higher baryon densities: WIMP-nuclear scattering ⇒ WIMP capture
 - Star powered partly or wholly by annihilation
- Dark stars vs. traditional Pop III stars
 - Potentially more massive
 - Different luminosity vs. temperature
 - Potentially very long lived
- Detection prospects
 - HST, JWST

Summary

Wide range of potential indirect signals for relic dark matter

- Annihilation in galactic halos
 - Cosmic rays: positrons, anti-protons, γ-rays
- Capture/annihilation in massive bodies
 - Neutrinos
 - Stellar evolution
 - Stellar abundances
- Room for more techniques
 - Synchrotron radiation (WMAP excess)
 - low energy gammas (511 keV)

PAMELA (R. Sparvoli)

HESS/MAGIC/CTA (D Horns)

FERMI (L Strigari)

IceCube (T. Montaruli)

7/05/2010