Mads Frandsen

Metric dark m **Rudolf Peierls Centre for Theoretical Physics**

Together with Subir Sarkar Phys.Rev.Lett 105 (2010) 011301

6th Patras Workshop on Axions, WIMPS & WISPs, Zurich, 5th July 2010

Outline

- Asymmetric Dark Matter
- Symmetric vs Asymmetric Cold Dark Matter
- Direct Detection and Models of Light Asymmetric Dark Matter
- Indirect Detection: Capture in the sun
- Helioseismology and neutrino fluxes
- <u>Summary</u>

What is the world made of?

What should the world be made of ?

Mass scale	Particle	Symmetry/ Quantum #	Stability	Production	Abundance
$\Lambda_{ ext{QCD}}$	Nucleons	Baryon number	[⊗] > 10³³ yr (dim-6 OK)	'freeze-out' from thermal equilibrium	$Ω_{\rm B}$ ~10 ⁻¹⁰ cf. observed $Ω_{\rm B}$ ~ 0.05

Thermal Relics

$$\dot{n} + 3Hn = -\langle \sigma v \rangle (n^2 - n_{\rm T}^2)$$

Chemical eq. maintained when ann rate exceeds the Hubble expansion rate

'Freeze-out' when annihilation rate: $\Gamma = n\sigma v \sim m_N^{3/2} T^{3/2} \mathrm{e}^{-m_N/T} \frac{1}{m_\pi^2}$ becomes comparable to expansion rate

$$H\sim \frac{\sqrt{g}T^2}{M_{\rm P}}$$
 where g \Rightarrow # relativistic species

i.e. 'freeze-out' at T ~ m_N /45, with:

The observed ratio is 10⁹ times bigger for baryons, and there are no antibaryons, so we must invoke an $\frac{n_B - n_B}{n_B - n_B}$

 $\frac{n_B - n_{\bar{B}}}{n_B + n_{\bar{B}}} \sim 10^{-9}$

 $\frac{n_N}{m_N} = \frac{n_{\bar{N}}}{m_N} \sim 10^{-19}$

Sakharov conditions for baryogenesis:

Baryon number violation
 C and CP violation
 Departure for thermal equilibrium

Baryon number violation occurs even in the Standard Model through non-perturbative (sphaleron-mediated) processes ... but CP-violation is too weak (out-of-equilibrium conditions are not available,the electroweak symmetry breaking phase transition is a 'cross-over')

Thus generation of the observed matter-antimatter asymmetry requires new BSM physics (could be related to neutrino masses ... possibly due to violation of lepton number → leptogenesis)

$$\mathcal{L} = \mathcal{L}_{SM} + \lambda_{\alpha J}^* \overline{\ell}_{\alpha} \cdot HN_J - \frac{1}{2} \overline{N_J} M_J N_J^c \qquad \lambda M^{-1} \lambda^{\mathrm{T}} \langle H^0 \rangle^2 = [m_{\nu}]$$
saw':
$$\nu_{L\alpha} \xrightarrow{m_D^{\alpha A}} M_A \qquad m_D^{\beta A} \xrightarrow{m_D^{\beta A}} \nu_{L\beta}$$

$$\Delta m_{atm}^2 = m_3^2 - m_2^2 \simeq 2.6 \times 10^{-3} \mathrm{eV}^2 \qquad \Delta m_{\odot}^2 = m_2^2 - m_1^2 \simeq 7.9 \times 10^{-5} \mathrm{eV}^2$$

Asymmetric baryonic matter

Any pre-existing fermion asymmetry would be redistributed by the B+L violating processes (which conserve B-L) among all particles with electroweak couplings

Although leptogenesis is not directly testable (unless the lepton number violation occurs as low as the TeV scale), it provides an elegant paradigm for the origin of baryons ... so we accept that the only kind of matter which we know exists originated non-thermally in the early universe

What should the world be made of ?

Mass scale	Particle	Symmetry/ Quantum #	Stability	Production	Abundance
$\Lambda_{ extsf{QCD}}$	Nucleons	Baryon number	[⊗] > 10³³ yr (dim-6 OK)	'freeze-out' from thermal equilibrium	$Ω_{\rm B} \sim 10^{-10}$ cf. observed $Ω_{\rm B} \sim 0.05$
$\overline{\Lambda_{\text{Fermi}}} \sim G_{\text{F}}^{-1/2}$	Neutralino?	R-parity?	violated?	'freeze-out' from thermal equilibrium	Ω _{LSP} ~ 0.3

For (softly broken) susy we have the 'WIMP miracle':

$$\Omega_{\chi} h^2 \simeq \frac{3 \times 10^{-27} \text{cm}^{-3} \text{s}^{-1}}{\langle \sigma v \rangle_{T=T_{\text{f}}}}$$

Why is the abundance of thermal relics **comparable** to that of baryons born non-thermally, with $\Omega_{\rm DM}/\Omega_{\rm B} \sim 5$?

Mass scale	Particle	Symmetry/ Quantum #	Stability	Production	Abundance
$\Lambda_{ ext{QCD}}$	Nucleons	Baryon number	[⊗] > 10³³ yr (dim-6 OK)	'freeze-out' from thermal equilibrium	$\Omega_{\rm B} \sim 10^{-10}$ cf. observed $\Omega_{\rm B} \sim 0.05$
$\Lambda_{\text{Fermi}} \sim$ $G_{-1/2}$	Neutralino?	R-parity?	violated?	'freeze-out' from thermal equilibrium	Ω _{LSP} ~ 0.3
- F	Technibaryon?	U(1) Technibaryon #	 τ ~ 10¹⁸ yr e⁺ excess?! (Sannino et al 08) 	Asymmetric (like the observed baryons)	Ω _{тв} ~0.3

$$\frac{\rho_{\rm DM}}{\rho_{\rm B}} \simeq 6 \sim \frac{m_{\rm DM}}{m_{\rm B}} \left(\frac{m_{\rm DM}}{m_{\rm B}}\right)^{3/2} {\rm e}^{-m_{\rm DM}/T_{\rm dec|sphaleron}}$$

EW scale particle sharing asymmetry,e.g. technibaryon, would explain the ratio of dark to baryonic matter... (Nussinov 1985)

Mass scale	Particle	Symmetry/ Quantum #	Stability	Production	Abundance
$\Lambda_{ ext{QCD}}$	Nucleons	Baryon number	[⊗] > 10³³ yr (dim-6 OK)	'freeze-out' from thermal equilibrium	$\Omega_{\rm B} \sim 10^{-10} {\rm cf.}$ observed $\Omega_{\rm B} \sim 0.05$
Λ _{Fermi} ∼ G _F ^{-1/2}	Neutralino? Technibaryon?	R-parity? (walking) Technicolour	violated? τ ~ 10 ¹⁸ yr e ⁺ excess?!	'freeze-out' from thermal equilibrium Asymmetric (like the observed baryons)	Ω _{LSP} ~ 0.3 Ω _{TB} ~ 0.3
$\Lambda_{ m DB}$ ~5 $\Lambda_{ m QCD}$	Dark Baryon	Dark Baryon #	?	Asymmetric	Ω _{DB} ~ 0.3

...or a 5 GeV 'dark baryon'. In this case with no Boltzmann suppresion:

$$\frac{\Omega_{DB}}{\Omega_B} = \frac{m_{DB}}{m_B}$$

(Kaplan 1990)

Direct Detection

Evidence for 'light' WIMP dark matter?

(Dama, Bernabei et al 08; CDMS-II, Ahmed et al 09; CoGeNT, Aalseth et al 10;) (Kopp, Schwetz and Zupan 09; Farina, pappadopulo and Strumia 09; Fitzpatrick, Hooper and Zurek 09:)

Models of TeV and GeV scale ADM

Unbaryons or Dark Mirror baryons

10-38

 10^{-39}

Interactions with SM through Higgs Exchange and (for Dirac fermion) magnetic moments

(Sannino and Zwicky 09) (M.T.F and Sarkar 10)

(An et al 2010)

Magnetic moments can provide arge SI/SD cross-sections

(An et al 2010)

SI and SD cross-sections similar for capture in the sun, but limits on SD much weaker~ $\sigma\!\sim\!10^{-36} cm^2$

Indirect Detection–Capture in the Sun

The Sun has been accreting dark matter particles for ~5 x 10⁹ yr as it orbits around the Galaxy ... these will orbit inside affecting energy transport Solar neutrino flux is very sensitive to the core temperature (Faulkner et al 1985, Press & Spergel 1985)

Flux of Dark Matter particles: 0.3 GeV /cm^3, at an average velocity v=270 km/s $\,$

PHYSICS WORLD FEBRUARY 2005

An accurate model of the Sun is crucial for our understanding of more-distant stars.

From John N Bahcall at the Institute for Advanced Study, Princeton, New Jersey, US

My personal guess is that it may take years before we stumble upon the key to resolving the mystery of why the improved measurements of element abundances cause solar models to disagree with helioseismological measurements while older measurements agree extraordinarily well. However, scientists love a conflict between theory and observation because they are guaranteed to learn something interesting by resolving it. We are puzzled, but we are having fun.

Chemical controversy at the solar surface

Improved measurements of elemental abundances suggest that something might be wrong with our model of the Sun

Solar puzzle – measurements of the speed of sound in the solar interior provide a stringent test of the solar model. This plot shows the fractional difference in the speed of sound (c) between the measured and predicted values as a function of the solar radius (R_{\odot}) (the dashed line represents perfect agreement between theory and observation). When the older heavy-element abundances are used in the model (red) the measured sound speeds agree much better with the calculations than they do when the new, lower values are used (blue).

Helioseismology and Solar Metallicity A New Problem with Standard Solar Models (SSM)

- Asplund, Grevesse and Sauval determined new solar chemical abundances (metallicity) in 2005 using improved 3D hydrodynamical modeling (tested with many surface spectroscopic observations) AGS05 vs GS98
- with these new chemical abundances in solar models (lower metallicity), the previous excellent agreement between SSM calculations and helioseismology is broken

Self-interactions can increase capture in the sun

(Zentner 09)

The abundance of ~ 5 GeV ADM in the Sun will not be depleted by annihilations ... naturally large self-int (M.T.F & Sarkar 10; $\sigma_{xx} = m_n^2 / m_x^2 \sigma_{nn}, n = neutron$ Taoso et al 10) $\sigma_{\chi\chi} - m_n m_{\chi} \sim m_{\chi}$ Abundance grows exponentially: $\sigma_{\chi\chi} = 10^{-23} cm^2$ At the bound of recent study of Bullet Cluster d (Wandelt et al 08) $\frac{\mathrm{d}N_{\chi}}{\mathrm{d}t} = C_{\chi\mathrm{N}} + C_{\chi\chi}N_{\chi}.$ 10-10 10^{-11} $N_{\chi}(t) = \frac{C_{\chi \mathcal{N}}}{C_{\chi \chi}} \left(e^{C_{\chi \chi} t} - 1 \right),$ $\sigma_{\chi N}^{SI} = 10^{-37} cm^2$ $\sigma_{\chi N}^{SD} = 10^{-36} cm^2$ **Black Disk Limit** 10^{-14} 10^{-15} 0.010.05 0.1 0.51. 5. Age of Sun [Gyr]

(Self-interacting ADM would also help to explain (Sp the paucity of cosmic structure on sub-Galactic scales) St

(Spergel & Steinhardt 2000)

Effects of light ADM in the Sun

DM affects the solar luminosity, Non-local heat transport:

$$L_{\chi} \sim 4 \times 10^{12} L_{\odot} \frac{N_{\chi}}{N_{\odot}} \frac{\sigma_{\chi \rm N}}{\sigma_{\odot}} \sqrt{\frac{m_{\rm N}}{m_{\chi}}}$$

Effectively the solar opacity is modified

$$\delta L(r) \sim -\delta \kappa_{\gamma}(r) \equiv -\kappa_{\chi}(r)/\kappa_{\gamma}(r)$$

(Press & Spergel 1985) (Gould & Raffelt 1985 Bottino et al 2002)

The core Solar temperature and neutrino fluxes altered... this can tested by SNO⁺ / Borexino

Linear Solar Models

(Villante & Ricci 2009, 2010; See Villantes talk TAUP 2009)

 SSMs provide a good approximation of the real sun. Small modifications are likely to explain disagreement with helioseismology.

We can expand linearly the solar models around the SSM and calculate:

 $\delta(\text{output}) = L[\delta(\text{input})]$

 $\delta(\text{input}) = \delta \kappa, \ \delta \varepsilon, \text{ new effects } \dots$ $\delta(\text{output}) = \delta u, \ \delta R_b, \ \delta \Phi_v, \ \delta Y_{ph} \dots$

write:
$$h(r) = \overline{h}(r)[1 + \delta h(r)]$$

 $Y(r) = \overline{Y}(r) + \Delta Y(r)$
 $X_i(r) = \overline{X}_i(r)[1 + \delta X_i(r)]$

(From Villante TAUP 09 The response of sound speed to Ske also Lopes, Silk & Hansen 01; Lopes, Bertone & Silk 02)

Sound speed is sensitive to differential opacity modifications:

$$(\delta\kappa_{outer} - \delta\kappa_{inner})$$

Discrepancy with helioseismic data is solved by:

$$\left(\delta\kappa_{outer} - \delta\kappa_{inner}\right) \approx 0.15$$

As an example:

-15% increase of opacity in the outer radiative region (increase metals ...)

- 15% decrease of opacity in the inner radiative region (??? few GeV WIMP in the solar core ???)

-0.01 -0.02 -0.03 0.4 0.2 Discrepancy for the convective radius is also solved/alleviated With same modification.

Convective radius measured from Helioseismology:

Convective radius inferred from the AGS05 SSM:

 $R_{CZ} = 0.713 R_{sun} + /-0.001$

 $R_{CZ} = 0.728 R_{sun} + /-0.0037$

(Bahcall, Serenelli & Basu 05)

	OPA1		OPA2		
	\mathbf{SM}	LSM	SM	LSM	
ΔY_{ini}	0.016	0.017	-0.0056	-0.0058	Γ
$\delta Z_{\rm ini}$	-0.018	-0.016	0.000	-0.001	
$\Delta Y_{\rm b}$	0.014	0.014	-0.0037	-0.0036	Γ
$\delta Z_{\rm b}$	-0.018	-0.018	0.0049	0.0047	
$\delta R_{\rm b}$	-0.0020	-0.0020	-0.0067	-0.0070	
$\delta \Phi_{\rm pp}$	-0.011	-0.010	0.0045	0.0052	Γ
$\delta \Phi_{\rm Be}$	0.13	0.13	-0.067	-0.064	
$\delta \Phi_{\rm B}$	0.27	0.27	-0.17	-0.17	
$\delta \Phi_{\rm N}$	0.14	0.14	-0.10	-0.094	
$\delta \Phi_{\rm O}$	0.21	0.22	-0.14	-0.14	

Recent Numerical Studies $W'^{R_{\odot}}$ maximal SD cross-section but different numerical/analytical approaches

<u>Cumberbatch et al</u> finds smaller variation on Convective Radius, Larger variations on Boron neutrinos

Taoso et al find virtually no effect on Convective Radius and neutrino fluxes

<u>Villante</u> finds 15% opacity variation (as from e.g. ADM) restores agreement with Helioseismology within LSM approach. (Villante 10) Effect on Neutrino fluxes and Helium abundance can constrain/rule out this scenario

(Cumberbatch et al 10; Taoso et al 10)

Neutrino flux measurements can constrain/rule out light ADM scenario

SNO+ pep and CNO Solar Neutrino Signals

Simulated SNO+ Energy Spectrum

CNO extracted with ±6% uncertainty (assuming target background levels ²¹⁰Bi and ²¹⁰Po, U, Th, ⁴⁰K achieved) in three years

3600 pep events/(kton·year), for electron recoils >0.8 MeV

Summary

- Asymmetric Dark Matter is motivated by wanting to explain Ω_{DM}/Ω_{B}
- ~ TeV scale ADM natural in Technicolor models of DEWSB.
- ~ GeV scale ADM arise from Hidden/Mirror/Unbaryon sectors.
- Direct and indirect detection challenging
- ~ GeV scale ADM ('Dark Baryon') naturally strongly selfinteracting
- Motivated by structure formation on Kpc-Mpc scales
- Large capture rates in the sun, possible solution of the solar composition problem
- Probed by neutrino flux measurements Interesting benchmark for Direct Detection and neutrino flux experiments