

Dark Matter at the LHC

The road is long, but at least we started driving ...

Filip Moortgat (ETH Zurich)

Evidence for Dark Matter

ETH Institute for Particle Physics

- □ Rotation curves
- Gravitational lensing
- □ Hot gas in clusters
- Bullet cluster
- → Existence of DM established!

Patras Workshop

From Cosmic Microwave Background measurements + large scale structures + Big Bang Nucleosynthesis:

~ 80% of matter in Universe is Dark Matter!

need new form of matter, that is neutral, stable and (at most) weakly interacting ...

8 July 2010 Filip Moortgat

SUSY & Dark Matter

ETH Institute for Particle Physics

Connection to particle physics:

Supersymmetry is a popular extension of the Standard Model of Particle Physics that *naturally* predicts a Lightest Supersymmetric Particle (LSP) with these properties:

Weakly Interacting Massive Particle (WIMP) with mass up to few 100 GeV gives correct relic density (present experimental lower limit ~ 50 GeV)

Also: Universal Extra Dimensions, Little Higgs with T-parity, ...

Present exp. limits ?

In MSSM:

Two types of signatures at the LHC:

- Missing Transverse Energy signals: "standard" WIMP dark matter (neutralinos, lightest KK particles, lightest T-odd parity particles, ...)
- long-lived heavy charged particles : stau, R-hadrons (gravitino DM, superwimps, split-susy, ...)

Goal of the LHC:

1) Discovery

2) Measure properties, identify underlying physics

The LHC

ETH Institute for Particle Physics

First collisions at 900 GeV : 23 November 2009 First collisions at 7 TeV : 30 March 2010

30 March 2010 at 12:58

LHC Page1	Fill: 10	105	E: 3500 Ge\	/ 30	-03-2010 13:24:16
	PROTON	PHYSICS:	STABL	E BEAMS	
Energy:	3500 GeV	I(B1):	1.88e+10	I(B2):	1.68e+10
FBCT Intensity 2E10 1.5E10 1E10 5E9 0E0 11:3	0 11:45	12:00 12:15	12:30 Time	12:45 13:00	Updated: 13:24:16
Comments 30-	-03-2010 13:22:57 Stable beams	!	BIS status and Link Stati Globa S Bei Moveable St	d SMP flags us of Beam Permits al Beam Permit betup Beam am Presence Devices Allowed In cable Beams	B1B2truetruetruetruetruetruetruetruetruetruetruetrue
LHC Operation	in CCC: 77600, 7	0480	PM Status B1	ENABLED PM Sta	tus B2 ENABLED

One of the first 7 TeV collisions:

Filip Moortgat

LHC timeline: 2010-2011: 1 fb⁻¹ collisions at E_{cm}= 7 TeV from 2013 onwards: collisions at E_{cm}~ 14 TeV → discoveries possible soon!

Patras Workshop

8 July 2010

6

The ATLAS detector

ETH Institute for Particle Physics

Muon Spectrometer ($|\eta|$ <2.7) : air-core toroids with gas-based muon chambers Muon trigger and measurement with momentum resolution < 10% up to E_µ ~ 1 TeV

SM processes in 2010

ETH Institute for Particle Physics

process	Order α _s	14 TeV (pb)	7 TeV (pb)	2 TeV ppbar (pb)	reference	
tī	NLO +NLL	910	170	7.4	arXiv: 0804.2800, arXiv: 0909.0037	Number of events in fb ⁻¹ : multiply b 1000 and then a typical acceptanc of 0.2-0.8
Single top	NLO	320				
W->ev or μν	NNLO	22000	8000	2700	arXiv: 0901.0002	
Z-> ee or μμ	NNLO	2000	770	250	arXiv: 0901.0002	
WW	NLO	112				
WZ		48				
ZZ		15				

Also see arXiv:hep-ph/0611148

Patras Workshop

The Tevatron can probe up to $\sqrt{s} = 2$ TeV and currently has 7 fb⁻¹ delivered, and may have 12 fb⁻¹ by the end of 2011.

$$\frac{12}{1} = 12$$

Roughly, the tevatron with 12000 pb⁻¹ has the same or greater reach than the LHC at 7 TeV and 1000 pb⁻¹ for particles with gg initial state and masses less than about 120 GeV. For particles with a qqbar initial state, it has same or greater reach up to 700 GeV.

Basic SUSY signatures

ETH Institute for Particle Physics

Plan for first LHC physics run: coherent survey of simple, inclusive signatures involving MET. But also need to search for "exotic" signatures such as those arising from long-lived NLSP's.

- Establish foundation for more complex searches. Signatures will expand to include b, т, t.
- Data-driven background methods: pursue multiple approaches, <u>as many cross-</u> <u>checks as possible.</u>

<u>0 leptons</u>	<u>1 lepton</u>	<u>2 leptons</u>	<u>≥3 leptons</u>
• Exclusive jets		• Like-sign	
• Inclusive Jets		• Opposite sign	
• Photons + Jets			12

Approach

- For many background measurements, we (mostly) do not want to rely on
 - Predicted cross sections (especially for QCD)
 - Predicted kinematical distributions
- Major emphasis on "Data-driven background determinations"
 - Rely on control samples in the data, sometimes with some assistance from Monte Carlo
 - May suffer from limitations (statistical or systematic) that reduce the precision of the measurement. Will evolve rapidly w/more data.

Inclusive Jet + MET reach

- 95% CL exclusion for all-hadronic search (\geq 3 jets + MET + e/ μ veto)
- Systematic uncertainty of 50% assumed on Standard Model background
- Sensitivity significantly beyond previous experiments (~50/pb to surpass Tevatron)

Patras Workshop

CMS,

ETH Institute for Particle Physics

Hadronic SUSY

ETH Institute for Particle Physics

(SPS1a = LM1)

N_{leptons}=0 : largest signal cross section, but beware of QCD!

Event Selection:

Efficiency for e.g. SPS1a: 13%

- MET > 200 GeV
- \ge 3 jets ($|\eta|$ < 1.7/3/3) with E_T > 180/110/30 GeV
- HT (= E_{T,j2}+E_{T,j3}+E_{T,j4}+MET) > 500 GeV
- indirect lepton veto
- cleanup and QCD rejection (see next slide)

Main backgrounds:

- QCD multijets: MET due to mismeasurements or jet resolution
- Z+jets: Z→vv irreducible
- tt+jets: hadronic or lost lepton(s)
- W+jets: hadronic or lost lepton

New variables

ETH Institute for Particle Physics

CMS PAS SUS-09-001

1 L. Randall and D. Tucker-Smith, "Dijet Searches for Supersymmetry at the LHC," Phys. Rev. Lett. **101 (2008) 221803.**

• Dijet analysis

N=3-6 jets: form two pseudo-jets
minimize

Patras Workshop

8 July 2010 Filip Moortgat

Jets in ATLAS

ETH Institute for Particle Physics

Observed inclusive jet multiplicity distribution (top left plot- black dots), inclusive p_T distribution for jets with p_T > 30 GeV and |y| < 2.8 (top right plot) and jet-jet mass distributions, compared to PYTHIA Monte Carlo prediction (yellow histogram). The distributions are normalized to unity and only statistical uncertainties are included.

CMS.

11

Patras Workshop

8 July 2010 Filip Moortgat

20

3D impact parameter value (left) and significance (right) for all tracks with $p_T>1$ GeV/c associated with jets with $p_T > 40$ GeV/c and $|\eta| < 1.5$

The MET challenge

ETH Institute for Particle Physics

Sources of instrumental noise:

- * readout discharge
- * electronics noise
- * beam halo muons
- * cosmics, ...

Our expectations from Tevatron:

MET in ATLAS

Distribution of $E_T^{miss}(x,y)$ as measured in a data sample of 14.4 million selected minimum bias events (dots) at 7 TeV center-of-mass energy, recorded in April 2010

 E_T^{miss} (x,y) resolution as a function of the total transverse energy (Sum E_T) for minimum bias events. The line represents a fit to the resolution obtained in the Monte Carlo simulation and the full dots represent the results from data taken \sqrt{s} = 7 TeV.

$W^{\pm} \rightarrow \mu^{\pm} v$ observation

ETH Institute for Particle Physics

W properties

Patras Workshop

8 July 2010 Filip Moortgat

2I OS SUSY

• Traditional approach: search for opp. sign, same flavor leptons from correlated SUSY production:

$$ilde{\chi}^0_2 woheadrightarrow \ell^+ ilde{\ell}^-; \quad ilde{\ell}^- woheadrightarrow \ell^- ilde{\chi}^0_1$$

slepton on-shell: seq. 2-body decays slepton off-shell: 3-body decay

Background estimations from eµ control sample.

$Z \rightarrow \mu^+ \mu^-$ observation

ETH Institute for Particle Physics

Classic SUSY signature; very low SM background. Reliable data-driven background estimate is critical. Basic cuts: ee/eµ/µµ with pT>10, pT>20 GeV ≥3 jets ET>30; SumET(jets)>200 GeV MET>80 GeV

Key issues: fake leptons & electron charge misID Largest background: ttbar

SS dileptons

ETH Institute for Particle Physics

35

DM properties @ LHC

ETH Institute for Particle Physics

Courtesy of K. Matchev

	Missing momenta reconstruction?	Mass me	Spin measurements	
		Inclusive	2 symmetric chains	
ptimism pessimism	None	Inv. mass endpoints and boundary lines		Inv. mass shapes
		$M_{eff}M_{est}H_{T}$	Wedgebox	
	Approximate	$S_{min,} M_{Tgen}$	M _{T2} , M _{2C} , M _{3C,} M _{CT,} M _{T2} (n,p,c)	As usual (MAOS)
	Exact	?	Polynomial method	As usual
Ŭ		optimism		

Patras Workshop

ETH Institute for Particle Physics

- Kinematic endpoint technique (classic)
- More recent: polynomial method (2003), wedgebox (2003), kink in MT2 distribution (2008)

Example of new method for sparticle reconstruction @ the LHC:

• *Precision sparticle spectroscopy in the inclusive same-sign dilepton channel at LHC*, K. Matchev, F. M., L. Pape, M. Park, hep-ph 0909.4300

Stopped gluinos

CMS PAS EXO-09-001

Where do R-hadrons stop?

800 Stopped Point R (cm) CMS preliminary 0.35 700 NI+EM 0.3 600 ····· EM Only 0.25 500 400 0.2 300 0.15 200 ***** 0.1 100 0.05 0 CMS Preliminary 200 400 600 1000 1400 800 1200 0 Stopped Point IZI (cm) 200 400 600 800 1000 1200 1400 1600 1800 2000 Gluino Mass [GeV/c^2]

- Offline analysis based on hadronic calorimeter (HCAL) energy deposit, shower shape, and pulse shape.
- Trigger efficiency: 31.8%. Efficiency after all cuts: 16.4% of stopped gluinos.

$$\sqrt{s} = 10 \text{ TeV}, m(\tilde{g}) = 300 \text{ GeV}, m(\chi_1^0) = 50 \text{ GeV}$$

Patras Workshop

8 July 2010 Filip Moortgat

R-hadron stopping efficiency

- Trigger: calorimeter (HCAL) energy + out of LHC collision times (beam gaps+interfill periods). Use coincidence of beam pick-up monitors upstream of CMS to veto pp.
- Dominant background: cosmic rays+instrumental noise (both studied during extensive CMS cosmic ray running in 2008-2009). R_{backaround}≈4×10⁻⁴ Hz. Patras Workshop 8 July 2010 Filip Moortgat 39

Stopped gluinos (3)

ETH Institute for Particle Physics

Significance vs. running time for various gluino lifetimes

CMS PAS EXO-09-001 scaled from 10 TeV \rightarrow 7 TeV

Significance vs. gluino mass

HSCP

ETH Institute for Particle Physics

- A very early analysis: dE/dx and possibly TOF based
- dE/dx part is well understood from cosmics running
- Sensitivity beyond the Tevatron with as little as 1 pb⁻¹ of data

- After many years of preparations, the LHC has started producing collisions at 7 TeV
- ATLAS and CMS detectors in excellent shape, first physics results appearing
- We've covered Particle Physics up to the '80s (W/Z) – soon entering the '90s (top)
- Expect to extend Tevatron searches for SUSY starting end of the year
- Stopped gluino and HSCP results earlier