Direct Dark Matter Detection: Overview and Principles

Louis Strigari Stanford University

6th Patras Workshop on Axions, WIMPs, and WISPs Zurich University, 5-9 July 2010

Observed galaxies trace dark matter distribution in the Universe

Sloan Digital Sky Survey

LSS + CMB + SNIa + Clusters indicate:

 Scale-invariant and adiabatic spectrum of initial density fluctuations
Universe is dominated by dark energy and cold dark matter

dark energy

dark matter

'Direct Proof' of Dark Matter

A DIRECT EMPIRICAL PROOF OF THE EXISTENCE OF DARK MATTER¹

DOUGLAS CLOWE,² MARUŠA BRADAČ,³ ANTHONY H. GONZALEZ,⁴ MAXIM MARKEVITCH,^{5,6} SCOTT W. RANDALL,⁵ CHRISTINE JONES,⁵ AND DENNIS ZARITSKY² Received 2006 June 6; accepted 2006 August 3; published 2006 August 30

The Milky Way Dark Matter Halo

Mass estimates broadly consistent with those that use satellite

dynamics (Frenk & White 1981, Little & Tremaine 1987, Kochanek 1996, Evans & Wilkinson 1999, Li & White 2008) Xue et al. 2008 use a population of 2000 BHB stars out to 60 kpc

Solar neighborhood high velocity stars RANESCOPERIOR CONSTITUTES Constraining the Local Galactic Escape Speed

high-velocity RAVE stars, i.e. a smaller sample of 16 stars.

the only difference is a general broadening of the contours. When we apply the prior $k \in [2.7, 4.7]$ we find that the 90 per cent confidence interval becomes $496 < v_{esc} < 655 \text{ km s}^{-1}$, with a median likelihood of $v = 556 \,\mathrm{km \, s^{-1}}$

Mon.Not.Roy.Astron.Soc.

for the b3709; 7556. 772 (2007/e method described in Section 5.1) the process of bootstrapping can result in values of v_{esc} that are smaller than the highest velocity star in the sample. This is a consequence of the fact that the bootstrap approach accounts

Dark Matter in Galactic Disk

Holmberg & Flynn 2004

Dynamical matter $56 \pm 6 \, M_{\odot} \, pc^{-2}$ Visible matter $53 \, M_{\odot} \, pc^{-2}$

Constrains contribution from a ``dark matter disk" Read, Bruch, et al. 2009

'Direct Detection' of Dark Matter

...Quasar microlensing

The direct detection of non-baryonic dark matter in the Galaxy?

M. R. S. Hawkins

Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ

2 citations

...surveys of halo stars

Direct Detection of Galactic Halo Dark Matter

B. R. Oppenheimer,^{1*} N. C. Hambly,² A. P. Digby,² S. T. Hodgkin,³ D. Saumon⁴ 100+ citations

'Direct Detection' of Dark Matter

DIRECT DETECTION OF COLD DARK MATTER SUBSTRUCTURE

...substructure lensing

N. DALAL¹ AND C. S. KOCHANEK² Received 2001 November 20; accepted 2002 February 18

Experimental Limits on the Dark Matter Halo of the Galaxy from Gravitational Microlensing

...halo microlensing

C. Alcock,^{1,2} R. A. Allsman,³ T. S. Axelrod,^{1,4} D. P. Bennett,^{1,2} K. H. Cook,^{1,2} K. C. Freeman,⁴ K. Griest,^{2,5} J. A. Guern,^{2,5} M. J. Lehner,^{2,5} S. L. Marshall,^{2,6} H.-S. Park,¹ S. Perlmutter,² B. A. Peterson,⁴ M. R. Pratt,^{2,6} P. J. Quinn,⁴ A. W. Rodgers,⁴ C. W. Stubbs,^{2,6,7} and W. Sutherland^{2,8}

Case for Weak Scale Dark Matter

- Low baryon density (BBN)
- CMB and large-scale structure dissipation-less matter component
- Standard Model extensions pick out weak scale for new physics
- Particles with weak-scale annihilation cross section have relic abundance near the critical density
- Simplest model assumption (e.g. 'crossing symmetry') imply a WIMP-quark cross section ~10⁻³⁶ cm²

WIMP Detection Basics

- ▶ mass density of Galactic WIMPs is approx. 0.3 GeV/cm³.
- ▶ WIMPs move around Galaxy with a speed of about 10⁻³c
- Assuming a WIMP mass of 50 GeV/ c^2 , the kinetic energy is ~ 50 keV
- WIMP mean free path ~ 10^7 km
- WIMP interaction rate in 1 kg of Ge ~ $1/10^5 s^{-1}$

CDMS talk, D. Balakishiyeva

WIMP Interactions

Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten

- Cross section:
- Spin-Independent (SI)
- Spin-dependent (SD)

$$\frac{d\sigma}{dE_R} = \frac{m_N}{2\mu_N^2 v^2} \left[\sigma_0^{SI} F_{SI}^2(E_R) + \sigma_0^{SD} F_{SD}^2(E_R) \right]$$

$$\mathcal{L} \supset \alpha_q^s \bar{\chi} \chi \bar{q} q + \alpha_q^V \bar{\chi} \gamma_\mu \chi \bar{q} \gamma^\mu q$$

$$\mathcal{L} \supset \alpha_q^A \left(\bar{\chi} \gamma^\mu \gamma_5 \chi \right) \left(\bar{q} \gamma_\mu \gamma_5 q \right)$$

Energy spectrum at detector

$$\frac{dR}{dE_R} = \frac{N_T m_N \rho_{\chi}}{2m_{\chi} \mu^2} \sigma(q^2) \int_{v_{min}}^{\infty} \frac{f(v)}{v} dv$$

Time-dependent direct detection

- Annual modulation (Drukier, Freese, Spergel, 1986)
- Directional detection (Spergel, 1988)

New directional limits

See Drift talk, D. Walker

Dark Matter 'Detections': Modern perspective

...Annual Modulation

First results from DAMA/LIBRA and the combined results with DAMA/NaI

the several requirements of this DM signature. Thus, the presence of Dark Matter particles in the galactic halo is supported also by DAMA/LIBRA and, considering the former DAMA/NaI and the present DAMA/LIBRA data all together (total exposure 0.82 ton×yr), the presence of Dark Matter particles in the galactic halo is supported at 8.2 σ C.L..

...Recoil spectrum (`heavy')

Dark Matter Search Results from the CDMS II Experiment

interacting massive particle (WIMP) dark matter. The final exposure of our low-temperature germanium particle detectors at the Soudan Underground Laboratory yielded two candidate events, with an expected background of 0.9 \pm 0.2 events. This is not statistically significant evidence for a WIMP signal. The combined CDMS II data place the strongest constraints on the WIMP-nucleon spin-independent scattering cross section for a wide range of WIMP masses and exclude new parameter space in inelastic dark matter models.

...Recoil spectrum (`light')

Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector

number of cosmogenic peaks can be observed for the first time. We discuss several possible causes for an irreducible excess of bulk-like events below 3 keVee, including a dark matter candidate common to the DAMA/LIBRA annual modulation effect, the hint of a signal in CDMS, and phenomenological predictions. Improved constraints are placed on a cosmological origin for the DAMA/LIBRA effect.

[246 citations]

[132 citations]

[44 citations]

Inelastic dar 100 100 120 100 keV In addition to dark matter, excited state with mas • 10^{-39} 10^{-39} Elastic scatterings suppressed compared to in • $m_{\chi} = 70 \, \text{GeV}$ 10⁻³⁸ 10⁻³⁸ Larger minimum velocity to scatter _10^{-39↓} 10⁻³⁹ $\sigma_n \, (\mathrm{cm}^2)$ $\beta_{\min} = \sqrt{\frac{1}{2m_N E_R}} \left(\frac{m_N E_R}{\mu} + \delta\right)$ 10-39 10⁻⁴⁰ 10^{-40} Heavy targets favored over light targets 10⁻⁴¹ 80 100 δ (keV) Modulation signal can be significantly enhanced MA/LIBRA 100380 Elimination or suppression of events at low energy 10-B

Light WIMPs: A CoGeNT Interpretation?

- Difficult to reconcile with other evidences for light WIMPs (Chang et al., arXiv:1004.0697)
- In contrast to previous studies (Fitzpatrick et al., arXiv:1003:0014)
- Non-standard models, with backgrounds, may explain data

$$\sigma_{\rm SI}(q^2) = \frac{4G_F^2 \mu^2}{\pi} \left[Zf_p + (A - Z)f_n \right]^2 F^2(q^2)$$

CoGeNT collaboration 2010

Low mass WIMPs?

Leff dependence of limits at low mass?

Collar & McKinsey 2010, Savage et al. arXiv:1006.0972

Extracting particle physics

Extracting particle physics

marginalize over particle parameters for fixed halo model

Projected Constraints for future detectors

MW halo modeling included in constraints projected for future detectors

Approx. 300 (100) events for 50 (500) GeV WIMP

Astrophysical systematics

Very recent studies: astrophysical systematics

Catena & Ullio 2009: MCMC; local density strongly peaked at 0.4 GeV cm⁻³ (See previous work: Dehnen & Binney 1998; Widrow, Pym, & Dubinski 2008)

• Weber & de Boer 2009: Correlations of local density with halo scalelength weaken constraints

Ling et al. 2009: Milky Way halo with baryons; velocity distribution more platykurtic than DM-only simulations. High velocity tail suppressed.

▶ Pato et al. 2010: disk orientation in numerical simulations

Theory of dark matter halos

Measured distribution of speeds near solar circle implies 10% variation relative to multivariate gaussian fit Vogelsberger et al., MNRAS 2009 Including substructure, local density probably not less than 1/2 the canonical value

Kamionkowski & Koushiappas 2008

Distribution function modeling: Milky Way

Distribution function is the sum of disk, bulge, and halo components

 $f(\mathcal{E}, L_z, E_z) = f_{\text{disk}}(\mathcal{E}, L_z, E_z) + f_{\text{bulge}}(\mathcal{E}) + f_{\text{halo}}(\mathcal{E})$

Solve poisson equation for each component and sum to get the total potential

$$f_i(\mathcal{E}) = \frac{1}{\sqrt{8\pi^2}} \int_0^{\mathcal{E}} \frac{d^2 \tilde{\rho}_i}{d\Psi_{\text{total}}^2} \frac{d\Psi_{\text{total}}}{\sqrt{\mathcal{E}} - \Psi_{\text{total}}}$$

Can assume a spherical expansion for the disk potential

$$\phi_{\rm disk} = -GM_{\rm disk}(1 - e^{-r/b_{\rm disk}})/r$$

Stability requires integrand to be a monotonic function of energy

Milky Way distribution function: Earlier studies

> Evens, Carollo, de Zeeuw 2000: Triaxial halo models

Kamionkowski and Kinkhabwala 1998: small changes in distribution function for models normalized to circular velocity

Ullio and Kamionkowski 2000: Anisotropic models considered in

Milky Way halo modeling

Applications to Inelastic dark matter (in prep.)

Weak charge:

 $Q_w^2 = N - (1 - 4\sin^2 \theta_w)Z$

Coherence condition: [three-momentum] x [nuclear radius] ≤ 1

Implies sensitivity to neutrinos $\sim 10 \text{ MeV}$

Fundamental prediction of the Standard Model, but not yet detected

Freedman 1974 PRD, Tubbs & Schramm 1975

through the geomagnetic field depends on magnetic rigidity (total momentum

Threshold Recoil Kinetic E

Monroe and Fisher PRD 2 Strigari, NJP 2009

10-1

et Opsaming decade in Dark Matter

