WIMP Dark Matter Search with XENON and DARWIN

(ENON1)

Uwe Oberlack

Johannes Gutenberg University Mainz, Germany

5

Rice University Houston, TX, USA

http://xenon.physics.rice.edu

6th Patras Workshop Zurich July 7, 2010

Current Status in WIMP DM Sensitivities (2009)

 10^{3}

10

oth Patras Workshop @ Zurich - July 7, 20

Current Status in WIMP DM Sensitivities (2010)

Inelastic Dark Matter Limits

- Assume DM can scatter only in a low-lying excited state, i.e., elastic scattering is suppressed.
- This makes DAMA/LIBRA annual modulation still compatible with XENON10 & CDMS in a parameter space with energy splitting ~90 – 140 keV at WIMP masses 50 – 140 GeV/c².
- XENON100 will cover the entire allowed parameter space.

The Liquid Xenon Dual Phase TPC

- Wimp recoil on Xe nucleus in dense liquid (2.9 g/cm³)
 → Ionization + UV Scintillation
- Detection of primary scintillation light (S1) with PMTs.
- Charge drift towards liquid/gas interface.
- Charge extraction liquid/gas at high field (5 kV/cm) between ground mesh (liquid) and anode (gas)
- Charge produces proportional scintillation signal (S2) in the gas phase (10 kV/cm)
- 3D position measurement:
 - ► X/Y from S2 signal. Resolution few mm.
 - ► Z from electron drift time (~1 mm).

Background Discrimination in Dual Phase Liquid Xenon TPC's

Ionization/Scintillation Ratio S2/S1

Background Discrimination in Dual Phase Liquid Xenon TPC's

3D Position Resolution: fiducial cut, singles/multiples

6th Patras Workshop @ Zurich - July 7, 2010

The XENON Program

Collaboration: US (3) + Switzerland (1) + Italy (2) + Portugal (1) + France (1) + Germany (3) + China (1) + Netherlands (1) + Israel (1)

GOAL: Explore WIMP Dark Matter with a sensitivity of $\sigma_s \sim 10^4$ cm².

Requires ton-scale fiducial volume with extremely low background.

CONCEPT:

- Target LXe: excellent for DM WIMPs scattering.
 - Sensitive to both axial and scalar coupling.
- Detector: two-phase XeTPC: 3D position sensitive, self-shielding.
- Background discrimination: simultaneous charge & light detection (>99.5%).
- PMT readout with >3 pe/keV. Low energy threshold for nuclear recoils (~5 keV).

PHASES:

R&D	XENON10	XENON100	XENON1T
Start: 2002	2 2005-2007	2008-2011	2011-2015
	Proof of concept.	Dark Matter run ongoing.	Technical design studies
	Total mass: 14 kg	Total mass: 170 kg	Total mass: ~2.4 t
	15 cm drift.	30 cm drift.	90 cm drift.
	Best limit in '07:	11 days: σ _g ~ 3 x 10 ⁴⁴ cm ²	Goal:
Uwe Oberlack	σ _s ∼10 ^₄ ³ cm²	Goal: σ _s ~ 2 x 10 ⁴⁵ cm ² 6th Patras Workshop @ Zurich - July 7, 201	σ _s ~ 3 x 10 ⁴⁷ cm ²

The Current Generation: XENON100 (2008-2011)

- 100 times lower background than XENON10
 - Material screening
 - Active LXe Veto
 - Upgrade of XENON10 shield (Cu, water)
 - Cryocooler/Feedthroughs outside shield
 - Low activity stainless steel
 - LXe self-shielding

Uwe Oberlack

- ~7 times larger target mass
 - ► 62 kg in target volume, 165 kg total LXe
- New PMTs with lower activity and high QE
- Improved electronics, grids, ...
- Gamma & neutron calibrations.
- DM search since Jan/13/20 🕉

6th Patras Workshop @ Zurich - July 7, 2010

Event Signatures in XENON100

XENON100: Understanding the Background

The Lowest Background Dark Matter Detector

Neutron Calibration of XENON100

• High statistics to be able to describe the nuclear recoil band up to higher energies.

• Neutron calibration also gives gammas from inelastic recoils and activation: used to infer the spatial dependence of S1 and S2 signals. Uwe Oberlack

6th Patras Workshop @ Zurich - July 7, 2010

Analysis of "First Light" XENON100 Data

- 11.2 live days of background data from October-November 2009
- Non-blind analysis: but cuts optimized on neutron and gamma calibration data.
- Only basic event selections are applied.
- 170 kg days exposure **background-free**.

XENON100 Spin-Independent Limit

XENON100 Spin-Independent Limit

Prospects: XENON100 Blinded Data

• We have already accumulated 11 times more data (~120 live days blinded) than used in this result. Uwe Oberlack

The Future: XENON-1T (2011-2015)

- 1t fiducial mass LXe detector to explore $\sigma \sim 3x10^{47} \text{ cm}^2$
- Pre-DUSEL "G2" experiment (PASAG)
- Technical proposal in preparation
- Location: LNGS or LSM
- 2 x 121 3" QUPID's
- Capital cost: ~ \$8.5M, 50% by US
- Collaboration: XENON100 + Bologna + Nikhef + WIS

Studying the Multi-ton Scale in LXe & LAr

- R&D and design study over 3 years for a next-generation noble liquid facility in Europe
- Approved by ASPERA (AStroParticle ERAnet) in late 2009
- Funded in Switzerland, Italy, France, Netherlands
- Combine efforts in both LAr and LXe
- Europe: UZH, INFN, ETHZ, Subatech, Nikhef, MPIK, Münster, Mainz, KIT, IFJPAN
- USA: Columbia, Princeton, (Rice), UCLA

Details: darwin.physik.uzh.ch

6th Patras Workshop @ 2

The Future of WIMP Searches Spin-Independent Sensitivity (indicative)

DM Direct Searches - Progress Over Time Spin-Independent Interactions

Uwe Oberlack Plot updated from DM Review: R. Gaitskell, Ann. Rev. Nucl. and Part. Sci. 54 (2004) 315-359 22

Summary & Outlook

- Dark Matter direct searches have advanced in sensitivity by two orders of magnitude in the last decade, with accelerating progress.
- XENON100 has been operating in DM search mode for several months. Set to provide order of magnitude improvement in sensitivity later this year.
- First analysis of 11.2 live days of XENON100 data: The lowest background DM detector in the world!
- New upper limits for spin-independent WIMP interactions on par with CDMS-II. Min.: $3.4 \times 10^{-44} \text{ cm}^2 @ M_{\text{IM}} = 55 \text{ GeV/c}^2$
- The DAMA/LIBRA annual modulation interpreted as a WIMP signal will be further tested by XENON100:
 - Even without electron recoil suppression.
 - Inelastic DM parameter space will be fully covered.
 - ▶ In the spin-dependent channel.
- Low mass WIMPs: Must be < 10 GeV/ c^2 . Improvements coming: new measurements of scintillation efficiency for low-energy nuclear recoils.
- Noble liquid detectors have matured, currently setting the pace of progress. -hank you.
- Planing for the future: XENON1T, DARWIN
- Stay tuned for more results from direct Dark Matter searches! 6th Patras Workshop @ Zurich - July 7, 2010 Uwe Oberlack

The XENON Collaboration XENON100 / XENON1T

Uwe Oberlack

6th Patras Workshop @ Zurich - July 7, 2010

BACKUP SLIDES

Liquid Xenon for Dark Matter Search

- Large atomic number A~131 best for SI interactions (σ~A²). Need low threshold.
- ~50% odd isotopes: SD interactions If DM detected: probe physics with the same detector using isotopically enriched media.
- No long-lived isotopes. Proven Kr-85 reduction to ppt level.
- High Z (54) and density: compact & self-shielding
- Scalability to large mass for σ~10⁴ cm² ~ 1 evt/ton/yr.
- "Easy" cryogenics (-100°C).
- Efficient and fast scintillator.
- Background discrimination in TPC.
 - Ionization/Scintillation
 - ► 3D imaging of TPC

WIMP Scattering Cross Sections

Example: SUSY (but direct searches are sensitive to other models as well)

- Compute cross sections χ quark and χ gluon with various SUSY models. Large parameter space, constrained by accelerator and direct search experiments, and cosmology.
 - spin-independent: coupling to mass of nucleus. Coherence $\Rightarrow \sigma \propto A^2$
 - spin-dependent: coupling of spins of nucleus and neutralino interaction with paired nucleons in the same energy state cancel => no A² enhancement

- Distribution of nucleons within nucleus: nuclear form factor.
- SI: Large nuclei gain ~A² at small momentum transfer, but lose at higher momentum transfer due to coherence loss.

