

ZEPLIN-III: Upgrades and status

Blair Edwards, STFC Rutherford Appleton Laboratory

On behalf of the ZEPLIN-III collaboration

AXION-WIMP 2010, Zurich 07/07/2010

Operating Principle

- Particle interactions in LXe produce scintillation and ionisation.
- Ratio of ionisation to scintillation provides discrimination.

The Detector: ZEPLIN-III

- PMTs in liquid to improve light collection
- 31 two-inch PMTs for fine position sensitivity
- 12 kg active target mass
- High E-field -> better n/γ discrimination
- ~3.6 cm drift depth, ~0.4 cm gas gap
- open plan no surfaces reduced feedback
- Low-background xenon (40 yr old low Kr)
- All copper construction electron beam welded

The Location: Boulby UG Lab

- Located in Boulby mine, North-East England
- 1100m UG (2600m water equivalent)
- Reduces muon flux by a factor of ~10⁶

 Low-background environment enhanced by lead+hydrocarbon shield providing combined attenuation factor of 10⁵ for both rock gammas and neutrons

First Science Run Data

- * 83 days operation @ 84% livetime
- * Collecting 847 kg.days of raw data
 - 267.9 kg.days effective fiducial exposure
- WIMP search box defined from NR calibrations below 50% NR from 2-16 keV_{ee}.
- Secondary selection rules on event topology (S1,S2) to remove MSSI double scatter events
 - 7 events observed within search box, extrapolation from electron recoil population fits gives expectation of 11.3 ± 3.0 in the box
 - (nr/γ) discrimination of 1:7400
 demonstrated!!

Spin-independent limit

 Simple Poisson analysis of data allows limits to be placed on the WIMP-nucleon spin-independent scattering cross-section:

 $8.1 x 10^{-8} \ pb @ M_d = 55 \ GeV/c^2$

V.N.Lebedenko et al, Phys. Rev. D 80:052010(2009)

Spin-dependent limits

- Limits also placed on spin-dependent interactions, on ¹²⁹Xe and ¹³¹Xe.
- With CDMS-II and XENON10 we place the best constraints on the WIMP-neutron cross-section.

Inelastic DM

- Analysis of the ZEPLIN-III FSR dataset excludes most of the DAMA region with 90% confidence.
- Completely excludes region with >87% confidence.
- Xe target similar kinematically to DAMA (NaI).

80

70

90 100

 $m_{\gamma}/GeVc^{-2}$

A=160 A=34 / \$\$ \$\$ 150

140

130

120

110

100

90

50

A¹⁶⁰ A⁹/₂/₂/₂/₂

140

130

120

110

100

90

50

60

Figure 5: In $m_{\chi}-\delta$ space, the confidence level at which ZEPLIN-III excludes the lowest value of σ_n consistent, at 99% CL, with causing the DAMA modulation. Three values of $v_{\rm esc}$ are shown: (from left) 500, 550 and 600 km s⁻¹.

The Upgrades: why?

- * Make it easier to find a DM signal!
 - Reduce neutron background
 - reduce internal sources, tag remaining neutrons, increase shielding
 - * Reduce electron recoil background
 - reduce internal sources
 - * Improve discrimination (aiming for 1:10,000!!)
 - improve stability and refined cuts
 - Increase exposure
 - improve duty cycle.

PMT Upgrade

- * Existing PMTs limited sensitivity of first run (from μ-ray leakage at least).
- * Custom design for ultra low-background tubes, pin-by-pin compatible.
- Detailed measurements of detector and new PMT components (with HPGe detector) to determine radioactivity of materials.
- * Simulations used to predict the background in ZEPLIN-III.

Background validation

- Factor of >10 improvement in gamma-ray activity expected.
- * Complete array installed and operational Successful!!!
- * ER background predicted at ~1.5 dru --> observed as predicted!!
- * Neutron background for 1 year run calculated to be 0.2 events (after all cuts).

Active Veto

- Provides tagging of neutron (and gamma) backgrounds.
- 30 cm of neutron shielding (15 cm Gd-loaded plastic, 15 cm scintillator).
- * Barrel and roof design providing > 3π coverage .
- 32 barrel sections and 20 roof segments (1 tonne plastic scintillator).
- Readout from 52 channels into separate DAQ system synchronised with ZEPLIN-III DAQ.
- Paper describing veto design and testing accepted for publication in Astroparticle Physics (arXiv: 1004.4207).

Veto performance

- * All 52 channels working!
- * Operation integrated into Z3 overall slow control systems.
- * LED PMT calibration system operational.
- Gamma-ray tagging efficiency as expected (if not better!)
- Neutron tagging efficiency > 65%

000

Other system upgrades

- Instrument operations fully automated to improve stability and duty cycle.
 - ✓ Successfully implemented, ~95% duty cycle achieved.

- Automated source delivery system to improve reproducibility and efficiency of daily calibrations.
 - ✓ Automated daily calibrations successfully implemented.

Other system upgrades

- "Phantom grid" to provide calibration of position reconstruction.
 - ✓ Successfully imaged in data
- * Improved neutron calibrations
 ✓ absolutely calibrated source allows for better MC measurement of *L_{eff}*.
- LED PMT calibration system
 ✓ used to monitor stability of PMTs response.
- Improved analysisbuilding on previous analysis

Current status

- The detector is currently running and acquiring dark data.
- Automated operation providing very good stability and high duty cycle (~95%).
- * Electron lifetime similar to FSR (~22 μs).
- Now we just have to wait and collect the

data!!

- Initial nuclear recoil and gamma calibrations completed.
- Analysis underway (based on the FSR foundations).

