Axions and White Dwarfs

J. Isern Institut de Ciències de l'Espai (CSIC-IEEC) Institut d'Estudis Espacials de Catalunya (IEEC)

> <u>Collaborators:</u> S. Catalán (U. Hertfordshire) E. García - Berro (UPC-IEEC) M. Salaris (John Mores Liverpool U.) S. Torres (UPC-IEEC)

6th Patras Workshop on Axions, WIMPs & WISPs Zurich University, 2010 July 6th

The white dwarf population is one of the best studied!

- # They are the end stage of low and intermediate-mass stars
- # Their evolution is just a cooling process # The basic physical ingredients of their evolution are well identified (not all has been satisfactorily solved yet) # Impressively solid observational
 - background for testing theory.

Courtesy of Christensen-Dalgaard

White Dwarf Cooling

-2

Log n (pc⁻³) ⁴

-6

The cooling process (I)

Neutrino cooling $[log(L/L_0) > -1.5]$ Is the must complicated phase because the initial conditions are unknown. **Neutrinos dominate & thermal** structures converge Very short epoch ($< 10^8$ yr) Fluid cooling $[-1.5 > \log(L/L_o) > -3]$ **Gravothermal energy Coulomb plasma** The main uncertainty comes from the C/O abundances that depend on the ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction, Z, & the treatment of convection

The cooling process (II)

Crystallization $[-3 > \log(L/L_0) > -4.5]$ Latent heat (~ kT_s per particle) **Sedimentation upon** crystallization that depends on the chemical profile and phase diagrams Debye cooling $[-4.5 > \log(L/L_o)]$ At low temperatures, the specific heat follows the Debye law **Compression of outer layers is** the main source of energy & prevents the sudden disappearence of the white dwarf

The H layer:

Acts as a source of opacity
If its mass is larger than 2x10⁻⁴ M_o, H-burning
Evolution predicts 10⁻⁴ M_o

<u>The He layer</u>

Important source of energy at very low T_e
Low opacity (n-Das cool much faster)
Controls the diffusion of H inwards (DA-nDA)
Controle the diffusion of C outwards (DB-DQ)
Evolution predicts 10⁻² M_o

Is the origin of the DA, n-DA character: •primordial ? •mixing? •both?

Luminosity versus time (dotted lines without sedimentation)

Comparison between cooling models

Hansen & Liebert'03

____: Renedo et al 2010 ----- : Salaris et al 2000

García Berro et al'10, Nature, 465,194

Is it possible to test the cooling of white dwarf stars?

... certainly yes!

The luminosity function

$$n(L) = \int_{M_l}^{M_U} \Phi(M) \Psi(t_{Gal} - t_{cool} - t_{MS}) \tau_{cool} dM$$

- **1.** n(L) is the observed distribution
- 2. Φ is the IMF, Ψ is the SFR, t_{Gal} is the age of the Galaxy
- 3. T_{cool} is the cooling time, t_{MS} lifetime progenitor, τ_{cool} characteristic cooling time, and hidden there is the IFMR

If the 3 ingredients are reasonably well known, it is possible to use the WDLF to test new physics

Surveys are more and more accurate and significative

Sloan sample of WD: High precision LF

M_{max} $n(l) \propto \langle au_{cool}
angle$ $\Phi(M)\Psi(\tau)dM$ M_i

The remaining axion window

For these masses, axions can freely escape from stars They can be treated as a sink of energy

$$M_{bol} = -2.5 \log L + ctn$$

$$\varepsilon_{a} = 1.08 \cdot 10^{23} \alpha \frac{Z^{2}}{A} T_{7}^{4} F(\Gamma)$$

$$\alpha = \frac{g_{ae}^{2}}{4\pi}$$

$$g_{ze} = 8.5 \cdot 10^{-11} c_{e} \left(\frac{m_{a}}{1eV} \right)$$

$$c_{e} = \frac{\cos^{2} \beta}{3}$$
DFSZ axions
Bremmsstrahlung is dominant
Nakagawa et al 1987, 1988

$$\begin{split} m_{a} \cos^{2} \beta &= 0 \\ m_{a} \cos^{2} \beta &= \text{very large} \\ m_{a} \cos^{2} \beta &= 10 \text{ meV} \\ m_{a} \cos^{2} \beta &= 4 \text{ meV} \end{split}$$

The best fit is obtained for $m_a cos^2 \beta \sim 5 \text{ meV}$

Uncertainties:

- Internal structure
- Emission rates
- Transparency of the envelope
- Initial-final mass relationship
- IMF
- Pathological SFR
- Ages of MS progenitors
- Metallicities
- Observational systematics

This result suggests that if axions (DFSZ ones) are included, the luminosity function of white dwarf stars is better fited

In the worst case they provide a very strong upper limit

Tasks to do:

Coincidence between the different cooling models

Improvement of models. Is there any "classical" effect that could account for this extra-cooling?

Improvement of the observational luminosity function.

- **# Predictions**
- **# Contradictions**

Non-radial g-modes

•Long period waves ~ 10² - 10³ s •Gravity is the restoring force

 $\frac{\dot{P}}{P} = -a\frac{\dot{T}}{T} + b\frac{\dot{R}}{R}$

The period increases as the star cools down and decreases as it contracts.

The radial term can be neglected for cool enough stars (DAV, DBV)

- DOV variables: the drift can be positive or negative depending on the mode
 - PG1159-35: P = 516 s and dP/dt=13.07 +/-0.3 x 10^{-11} s/s
- DBV variables: the drift is always positive. dP/dt ~ 10⁻¹³ 10⁻¹⁴ s/s. No drift measurements
- DAV variables: the drift is always positive.
 - G117-B15A: P=215.2 s, dP/dt = 3.57×10^{-15} s/s (Kepler et al 2005)
 - R548: P =213.13 s, dP/dt </= 5.5 x 10⁻¹⁵ s/s

Còrsico and Athaus, 2004

$$\dot{\Pi} = (12.0 \pm 3.5) \times 10^{-15} \text{ s/s}$$

The first value (Kepler et al'91) was a factor of 2 larger than expected. Three solutions:

- Observational error
- White dwarfs with "IME" cores
- Exotic source of cooling

 $P = 215.1973888 \pm 0.0000004 \quad s$ $\frac{dP}{dt} = (4.27 \pm 0.80) \times 10^{-15} \quad s/s$

With proper motion correction: $\dot{P} = (3.57 \pm 0.82) \times 10^{-15} s/s$ **Possible additional corrections:**

Reflex motion caused by the companion Resonances caused by the different compositions layers

4.07±0.59x10⁻¹⁵ s/s (Kepler'09)

$$M_{bol} = -2.5 \log L + ctn$$

$$\varepsilon_{a} = 1.08 \cdot 10^{23} \alpha \frac{Z^{2}}{A} T_{7}^{4} F(\Gamma)$$

$$\alpha = \frac{g_{ae}^{2}}{4\pi}$$

$$g_{ze} = 8.5 \cdot 10^{-11} c_{e} \binom{m_{a}}{1eV}$$

$$c_{e} = \frac{\cos^{2} \beta}{3}$$

$$\frac{\dot{\Pi}_{obs}}{\dot{\Pi}_{mod}} \approx \frac{L_{mod} + L_x}{L_{mod}}$$

$$Isern et al 1993$$

$$m_a \cos^2 \beta \approx 8.5 \text{ meV}$$

DFSZ axions Bremmsstrahlung is dominant Nakagawa et al 1987, <u>1988</u>

Fiducial model & error budget

$$P_{\rm F}$$
=210.4 s
dP/dt =3.9x10⁻¹⁵ss⁻¹

Error budget		
Source	$\Delta \mathbf{P}(\mathbf{s})$	$\Delta dP/dt (ss^{-1})x10^{15}$
– Mode identification	6	1.0
\mathbf{M}_{*}	6	1.0
Chemical profile	4	0.1
T_{eff}	2	0.2

Corsico et al 2001: $m_a = 0$ $P_F = 210.4 \pm 18 \text{ s}$ $dP/dt = (3.9 \pm 2.3) \times 10^{-15} \text{ss}^{-1}$

 $m_a = 5 \text{ meV};$ dP/dt ~ 6 x 10⁻¹⁵ ss⁻¹

Kepler et al 2009 Kepler et al 2005

 $m_a \cos^2 \beta \text{ [meV]}$

Bischoff-Kim et al 2008: $m_a < 13 - 26 \text{ meV}$

Observed and predicted secular drift of G117-B15A

PREDICTION

In the case of the DBV (Corsico & Althaus, 2004):

 $dP/dt \sim 10^{-13} - 10^{-14} s$

Axions with $m_a \sim 5$ would modify dP/dt by a factor 1.5 (it strongly depends on the temperature of the core)

Influence on the AGB evolution

Table 1. Properties of the models during the HB and E-AGB phases.										
M _T	$M_{\rm ax}$	$\mathrm{He}^{1}_{\mathrm{s}}$	$\log L_{\rm tip}$	$M_{ m He}^1$	Δt_{He}	$M_{\rm He}^2$	$\Delta t_{\text{E-AGB}}$	He^2_s	$M_{\rm CO}$	
	0.0	0.298	3.451	0.479						
0.8	8.5	0.298	3.559	0.501						
	20.	0.299	3.750	0.544						
1.5	0.0	0.294	3.445	0.477						
	8.5	0.294	3.561	0.500						
	20.	0.295	3.765	0.547						
3.0	0.0	0.296	2.560	0.378	141	0.545	9.2	0.296	0.549	
	8.5	0.296	2.587	0.378	127	0.530	6.6	0.296	0.524	
	20.	0.298	2.707	0.378	85.6	0.479	5.0	0.298	0.459	
5.0	0.0	0.296	3.186	0.654	20.8	1.024	1.20	0.324	0.856	
	8.5	0.296	3.187	0.651	20.0	1.014	0.75	0.340	0.744	
	20.	0.297	3.192	0.648	16.6	0.968	0.51	0.347	0.645	
7.0	0.0	0.296	3.685	1.001	7.3	1.591	0.39	0.366	1.005	
	8.5	0.298	3.686	1.001	7.05	1.579	0.240	0.377	0.881	
	20.	0.299	3.688	1.001	6.2	1.537	0.115	0.381	0.787	
8.0	0.0	0.300	3.881	1.201	5.1	1.882	C-ignition			
	8.5	0.300	3.882	1.201	5.1	1.889	C-ignition			
	20.	0.301	3.883	1.201	4.64	1.585	C-ignition			
9.0	0.0	0.301	4.052	1.422	4.1	2.217	C-ignition			
	8.5	0.301	4.053	1.422	4.1	2.209	C-ignition			
	20.	0.302	4.055	1.422	3.9	2.165	C-ignition			
							0			

Domínguez, Straniero, Isern'99

Influence on core collapse supernovae

Raffelt'06 m_a(KSVZ) < 16 meV m_a(DFSZ) ?

Keil et al '97

Nucleon bremsstrahlung is dominant

Conclusions:

. . .

Because of their simplicity, WDs are excellent complementary laboratories for testing new physics.

The recent luminosity functions and the measurement of the secular drift of the pulsation period of DAV suggest that WDs cool dowm more quickly than expected . Axions could account for this discrepancy.
Nevertheless, more conventional explanations have to be explored before: Improvement of the observational WDLF Effects of the metallicity on the internal chemical composition Evolution of the envelope: DA-noDA exchange...