Motivation for WIMPs and WISPs *

I. Antoniadis

CERN

6th Patras Workshop on Axions, WIMPs and WISPs Zurich, 5-9 July 2010

- WIMPs
- WISPs from string compactifications: moduli, axions and ALPs **
- **3** Extra U(1)s and anomaly induced terms
 - new short-range forces and 5th force experiments
 - axion alternatives and optical experiments
 - *WeaklyInteractingMassiveParticle WeaklyInteractingSub-eVParticle **AxionLikeParticle

WIMPs: Dark matter candidates

Most plausible characteristics:

- mass: $\mathcal{O}(10^2 10^3) \text{ GeV}$
- coupling: weak interactions, em neutral
- life-time: cosmologically stable ⇒
 need discrete symmetry to protect decay
 - e.g. R-parity in SUSY, T-parity in little Higgs models,
 - KK-parity in models with extra TeV-dimensions, etc
- spin: fermion or boson

Intensive search in the following years:

direct and indirect detection experiments + particle accelerators

Other cases may also work such as: keV gravitino, axions, etc

see G. Servant's talk

WISPs from BSM models

```
Examples of WISPs: ALPs, fifth force, ...

ALPs: mass and decay constant (m_a, f_a): arbitrary parameters standard Peccei-Quinn axions: m_a f_a = m_\pi f_\pi (strong CP problem)

Generic in string theory compactifications
```

- supersymmetric compactifications with high string scale
- low string scale and large extra dimensions

but varying properties in different classes of models

 \Rightarrow light pseudoscalars, extra U(1)s, scalars (+ SUSY partners) : WISPs axions ALPs 5th force

String moduli

String compactifications from 10/11 to 4 dims \rightarrow scalar moduli arbitrary VEVs: parametrize the compactification manifold

size of cycles, shapes, ..., string coupling

- N=1 SUSY \Rightarrow complexification: scalar + i pseudoscalar $\equiv \phi_i$
- Low energy couplings: functions of moduli

e.g. gauge couplings:
$$\frac{1}{g_a^2}F_a^2$$
 a: gauge group

$$N = 1 \text{ SUSY} \Rightarrow \text{ holomorphicity:} \quad \frac{1}{g_a^2} = \text{Re} f_a(\phi_i)$$

SUSY transformation \Rightarrow moduli-dependent θ -angles:

$$\theta_a F_a \tilde{F}_a$$
 with $\theta_a = \operatorname{Im} f_a(\phi_i)$

In superspace:
$$\int d^2\theta f(\phi_i) W_a^2 \leftarrow \text{gauge field-strength chiral superfield}$$

Moduli stabilization

If moduli massless \rightarrow inconsistent

long range forces, cosmological production, accelerators

Outstanding problem: moduli stabilization

- avoid experimental conflict
- fix their VEVs ⇒ compute low energy couplings

- preserving SUSY

Generate moduli potential:

via

- after SUSY breaking

- non-perturbative effects or by
- turn-on fluxes: constant field-strengths of generalized gauge potentials

gauge fields: internal magnetic fields

generalization: higher rank antisymmetric tensors

string axions

Pseudoscalars: approximate shift symmetries (PQ type)

⇒ candidates for axions and ALPs

perturbation theory:
$$a \sum_{i} c_{i} F_{i} \tilde{F}_{i} \equiv a \sum_{i} c_{i} F_{i} \wedge F_{i}$$

Poincaré duals to 2-index antisymmetric tensors $B_{\mu\nu} \equiv B_2$

$$\partial_{\mu}a = \epsilon_{\mu\nu\lambda\rho}\partial^{\nu}B^{\lambda\rho}$$
 also $F \wedge F = \partial_{\mu}\omega^{\mu} \leftarrow$ Chern-Simons current $\omega_{\mu} = \epsilon_{\mu\nu\lambda\rho}A^{\nu}F^{\lambda\rho}$ \Rightarrow $(dB_2)\sum_i c_i(A_iF_i)$

- Heterotic: universal axion complexified with dilaton (string coupling)
- Other string theories: several

shift symmetries broken by non-perturbative effects

 \rightarrow in general (m_a, f_a) : independent parameters

Particular values of (m_a, f_a)

 m_a : - dynamical scale of new strong interactions

- string scale
- suppressed by compactification volume
 axion in the bulk of large extra dimensions
- related to SUSY breaking:

$$m_a \sim \frac{m_s^2}{M_p} \leftarrow \text{su/sy in SM} \sim 10^{-3} \text{ eV}$$

 f_a : - Planck scale

- string scale
- suppressed by compactification volume
- VEV of a scalar field

astrophysical constraints $\Rightarrow f_a \gtrsim 10^{10} \text{ GeV}$

Experimental bounds on Axion Like Particles

Extra U(1)'s: present in many SM extensions

- GUTs with rank > 4
- general feature of string compactifications

```
e.g. in D-brane models: U(N) groups away from orientifolds
```

Masses and couplings:

- $m_X = g_X v \leftarrow VEV$ of a Higgs field breaking $U(1)_X$
- $m_X = g_X M \leftarrow \text{string (or new physics) scale}$
- ⇒ small mass from coupling suppression:

usually associated to known global symmetries of the SM

(anomalous or not) such as (combinations of)

Baryon and Lepton number, or PQ symmetry

- Standard Model fermions charged under $U(1)_X$ accelerator experimental constraints \Rightarrow m_X heavy or light with small coupling $m_X/g_X \gtrsim \text{TeV}$ e.g. $g_X \lesssim 10^{-12}$ if $m_X \sim \text{subeV} \rightarrow 5\text{th}$ force experiments for instance in models with large extra dimensions anomalous $U(1)_X$ with Green-Schwarz anomaly cancellation
- allomatous $U(1)\chi$ with Green-Schwarz anomaly cancellation

 All Standard Model fermions neutral under Xbut possible extra heavy fermions charged under SM and $U(1)\chi$ \Rightarrow interesting effects: novel anomaly driven signatures [20]
 small X-photon kinetic mixing \rightarrow 'millicharged' fermions originally hidden under SM see Jaeckel's talk

Green-Schwarz anomaly cancellation

D-brane models: $U(1)_X$ gauge boson acquires a mass

but global symmetry remains in perturbation theory

5th force and microgravity experiments

 $m_X = g_X M \Rightarrow$ small mass from coupling suppression

e.g. in models with large extra dims if X propagates in (part of) the bulk

but localized mass from anomalies induced by localized chiral states

I.A.-Arkani-Hamed-Dimopoulos-Dvali '98, I.A.-Benakli-Maillard-Laugier '02

$$g_X \sim 1/\sqrt{V_X}$$
 (volume suppressed) $\gtrsim M_s/M_P \sim 10^{-16}$ $M_s \sim \text{TeV}$

$$\Rightarrow$$
 $m_X \gtrsim M_s^2/M_P \simeq 10^{-4}\,\mathrm{eV} \to \mathrm{submm\ range}$

can be experimentally tested for any number of extra dimensions

Light U(1) gauge bosons: no derivative couplings

 \Rightarrow for the same mass much stronger than gravity: $\gtrsim~10^6$

→ see Hoedl's talk

Experimental limits on short distance forces

Adelberger et al. '06

$\lambda \sim$ 55 μ m

ullet dark-energy length scale pprox 85 μ m

I. Antoniadis (CERN) 15 / 25

improved bounds in the range 5-15 $\mu \mathrm{m}$

Geraci-Smullin-Weld-Chiaverini-Kapitulnik '08

I. Antoniadis (CERN) 16 / 25

improved bounds from Casimir effect Decca-Fischbach et al '07, '08 in the nm range

- 5: Colorado 4: Stanford
- 3: Lamoureaux 1: Mohideen et al.

Neutron scattering: bounds in the range $\sim 1 \text{pm}$ - 1 nm [11]

GRANIT:

Nesvizhevsky-Pignol-Protasov '07

Neutron whispering gallery

Centrifugal quantum states of neutrons

challenging case: all new fermions charged under SM and X unobservable either heavier than LHC energy or very weakly coupled

naive expectation from decoupling ⇒

at low energies double suppression: coupling + mass

e.g. X coupling to SM gauge bosons:

dim-6 effective operator $F_X F_I F_I$

exception: mixed U(1) anomalies

 Non trivial anomaly cancellation → new dimensionless coupling $\Rightarrow U(1)_X$ may couple to SM gauge bosons with no mass suppression

$U(1)_X \times U(1)_A$ example and Chern-Simons terms

X anomalous, A anomaly free: cancel mixed anomalies

⇒ also possible Chern-Simons terms:

I.A.-Kiritsis-Tomaras '00

Coriano-Irges-Kiritsis '05, Anastasopoulos-Bianchi-Dudas-Kiritsis '06

$$\mathcal{L} = -\frac{1}{4}F_A^2 - \frac{1}{4}F_X^2 + \frac{1}{2}(D\theta_X)^2 - \frac{\kappa}{m_X}D\theta_X \wedge A \wedge F_A + \dots \quad D = d + m_X X$$

$$\rightarrow$$
 unitary gauge: $-\frac{1}{4}F_A^2 - \frac{1}{4}F_X^2 + \frac{m_X^2}{2}X^2 - \kappa X \wedge A \wedge F_A + \dots$

• $A \equiv \gamma \Rightarrow$ effects in optical experiments

I.A.-Boyarsky-Ruchayskiy '06, '07

• $A \equiv Z, W \Rightarrow LHC$ physics

I.A.-Boyarsky-Espahbodi-Ruchayskiy-Wells '09

 $X \wedge A \wedge F_A \Rightarrow XA$ mixing in the presence of magnetic field $F_A \neq 0$ linearly polarized photon gets a mass \Rightarrow axion behavior, interesting effects 2 parameters: mass m_X , C-S coupling $\kappa \leftarrow$ dimensionless

 $X_{\mu} \leftrightarrow$ axion: $a \equiv \theta_X$ with mass $m_a = m_X$ and decay constant $f_a \equiv \frac{m_X}{\kappa}$ however without axion constraint $m_a f_a = m_{\pi} f_{\pi}$

astrophysical constraints $\gg m_X/\kappa \gtrsim 10^{10} \text{ GeV} \quad \Rightarrow \kappa \lesssim 10^{-19} m_X/\text{eV}$

can be evaded if X-current conserved at stellar energies

Idea from QED with photon mass: em current conservation \Rightarrow high energy longitudinal γ emission suppressed by m_{γ}/E

I. Antoniadis (CERN) 22 / 25

Evading the astrophysics bounds

X-current is not conserved: $j_X^{\mu} = \kappa \epsilon^{\mu\nu\lambda\rho} A_{\nu} F_{\lambda\rho}^{A} \Rightarrow \partial_{\mu} j_X^{\mu} = \kappa F_A \wedge F_A$

However \mathcal{L} effective up to a scale $\Lambda \lesssim m_X/\kappa$ (unitarity bound)

Idea: modify the theory at Λ so that j_X^μ becomes conserved

e.g. integrate massive fermions f of mass $m_f \Rightarrow$

$$\delta \mathcal{L} = \kappa A \wedge X \wedge F_A + \kappa \theta_X \frac{m_f^2}{\Box + m_f^2} F_A \wedge F_A - \kappa (\partial_\mu X^\mu) \frac{1}{\Box + m_f^2} F_A \wedge F_A$$

$$E << m_f: \kappa A \wedge X \wedge F_A + \kappa \theta_X F_A \wedge F_A = \kappa A \wedge D\theta_X \wedge F_A$$
 as before

$$E>>m_f\colon \kappa\,A\wedge X\wedge F_A+\kappa(\partial_\mu X^\mu)rac{1}{\Box}F_A\wedge F_A$$

X-current becomes at high energies:

$$j_X^{\mu} = \kappa \epsilon^{\mu\nu\lambda\rho} A_{\nu} F_{\lambda\rho}^{A} - \kappa \frac{\partial^{\mu}}{\Box} F_{A} \tilde{F}_{A} \Rightarrow \partial_{\mu} j_{X}^{\mu} = 0$$

longitudinal X production is then suppressed by $(m_X/E)^2$

avoid astrophysical bounds $\Rightarrow m_f \lesssim \text{keV} \leftarrow \text{stellar energies}$

$$\Rightarrow \kappa m_X \lesssim 10^{-10} \text{ eV}$$

- gauging axion shift \Rightarrow no $f_a \leftrightarrow m_a$ relation
- conserved current in star emission \Rightarrow weakened bound on f_a
- can accommodate PVLAS type data
- $m_X \sim 1-10^{-3} \ {
 m eV}$: need $\kappa \sim 10^{-9}-10^{-6}$

small values of κ may also be obtained from millicharged keV fermions f

Conclusions

- WISPs: light moduli, axions, ALPs, extra U(1)s generic appearance from string compactifications in particular ALPs with no mass-coupling relation
- New short range forces within the reach of microgravity experiments
- Extra U(1)s: novel anomaly induced effects
 new dimensionless coupling to SM gauge bosons
 - ⇒ gauged PQ symmetries and axion alternatives avoiding mass/coupling relation and strong astrophysical bounds
- Non-accelerator experiments: another window to BSM physics

I. Antoniadis (CERN) 25 / 25